=
=
L
O
Q
=
o0

En

Time-stamping of CAN frames

CiA 603 speciﬁes an Autosar-comp/iant time management for CAN networks.

CAN controllers will support this.

he currently used Autosar (Automotive Open System

Architecture) compliant time-base synchronization is
implemented in software. In order to achieve higher time
accuracy, a hardware implementation is needed. The CiA
603 document specifies a hardware time-stamping con-
cept to be implemented in future CAN controllers. This
hardware approach is independent of interrupt response
times and results in higher accuracy of the time-base syn-
chronization.

TO0 End of SYNC

Tx_Stamp. From this the time master calculates T_Tx,
which is the time from s(T_0) to the end of Sync’s
transmission: T_Tx = ns(T_0) + ns(Tx_Stamp - T_0_C).

In the second step of the synchronization proce-
dure, the time master writes T_Tx (a 32-bit number repre-
senting nanoseconds) into the transmit buffer for the FUP
(follow-up) message. The data of the FUP message is
complemented by two additional bits that signal whether
there was an overflow of the timer counter or in the

End of FUP

v

SYNC message containing seconds portion s(T_0)

T_TX
\

TM stores s(T_0) and ns(T_0), captures T_0_C

Figure 1: Time synchronization process (Photo: Bosch)

In Autorsar systems, time is generally represented as a
64-bit number. The actual time value in an ECU is given by
adding the value of a 32-bit free-running timer counter to the
value of a 64-bit time-base register. An ECU may be linked
to several time domains, with different time-base registers,
but sharing the same timer counter. Each time domain has
one time master and several time slaves. The time master
synchronizes the time slaves by propagating, over the com-
munication network, the time-base value to the time slaves.

A time-base can be distributed between networks
that are connected by a time gateway. The time gateway
receives the time-base as time slave from one network and
propagates it as time master to the other networks. In the
following only the synchronization of the time-base over the
CAN network is regarded.

Synchronization over CAN

In the first step of the synchronization procedure, the time
master saves the actual time T_0O at the beginning of the
procedure in seconds-portions s(T_0) and nanoseconds-
portions ns(T_0), as well as the actual value T_0_C of its
timer counter (a 32-bit number). The time master writes
s(T_0) into the transmit buffer for

>TM captures Tx_Stamp
TS captures Rx_Stamp v

v
Common reference point

FUP message containing T_TX in nanoseconds

TS receives T_TX

calculation of T_Tx. For the time master, the synchroniza-
tion procedure ends when the CAN controller has transmit-
ted the FUP message.

The Sync and FUP messages are transmitted using
the same CAN-ID; additional coding in the data field
distinguishes the both messages, identifies the time
domain, and enables error checking. While an ECU uses
only one CAN-ID if it is time master for different time
domains, the CAN protocol requires that other time
masters (of other time domains) on the same CAN
network use different CAN-IDs.

A time slave starts the synchronization procedure
at the reception of the Sync message, which triggers
the capture of its timer counter value as RX_Stamp and
provides the seconds-portion of the time master’s T_0. The
capturing of Tx_Stamp in the time master and Rx_Stamp
in the time slaves is triggered in all nodes by the end of the
same CAN data frame (Sync message). The different nodes
see this event with a phase shift of less than one CAN bit
time.

The time slaves enter the second step of the synchro-
nization procedure at the reception of the FUP message.
This message enables the time slave to calculate, based

the Sync message and requests Byte O ! Bytel : Byte2 | Byte3 ! Byte4 E Byte 5 i Byte 6 i Byte 7
. Type = SYNC= 0x20 CRC .
the CAN controller to transmit [type=sync=ox10 Ust D | sC uso . Seconds (32 Bit)
it. When the CAN controller has ! - - ! i ! !
. . . _ e SO T T T
succes§fully transmitted it, this %S:;ESL gﬁz Eig D | SC|res. |¢]v|old Nanoseconds (30 Bit)
event triggers the capture of the t ; t

actual timer counter value as

Figure 2: Autosar CAN synchronization messages (Photo: Bosch)

30

the value of its timer counter TC, the received s(T_0), and
its Rx_Stamp, the actual time T,: T, = s(T_0) + T_Tx +
ns(TC — Rx_Stamp).

Repeated synchronizations allow the time slaves
to adjust their local clock speeds. It is not necessary
to increment the timer counter in all nodes at the same
speed, because in the Sync or FUP messages: all time
information is transformed into real time units, seconds
in the Sync message, and nanoseconds in the FUP
message.

Advantage of time-stamping in hardware

Software implementations for CAN are based on Sync
messages that trigger interrupts at frame transmission
(time master) and reception (time slaves). The interrupt ser-
vice routines capture and compare the values of free run-
ning counters and calculate, with the help of a FUP mes-
sage, the actual time offset between time master and time
slaves. The accuracy depends on the interrupt response
times after the Sync message. The synchrony between
the time-stamps Tx_Stamp and Rx_Stamp is worsened by
latency jitter.

When the timer counters are captured in hardware,
directly triggered by the CAN controllers, instead of being
captured by the interrupt service routines, latency jit-
ter is avoided and the accuracy of the synchronization is
improved.

The purpose of the CiA 6083 is to specify, beyond the
functions already specified in ISO 11898-1, which func-
tions CAN controllers should provide to support the Auto-
sar-compliant synchronization method.

In ISO 11898-1, time-stamping is specified for the
support of Time-triggered CAN (TTCAN) as standard-
ized in 1ISO 11898-4. These time-stamps are captured at
the SOF (start of frame) bit and they are 16-bit numbers,
using the CAN bit time as time steps. In current Autosar-
compliant systems, time-stamps are captured at the EOF
(end of frame), by the message’s transmission or reception
interrupt service routines. They are 32-bit numbers, using
smaller time steps.

The gradual, non-disruptive integration of new nodes
with CAN time-stamping in hardware into existing systems
requires that the hardware time-stamps are also captured
at EOF. To achieve the necessary precision, the time-
stamps need to be 32-bit numbers, captured from timer
counters with time steps of less than one CAN bit time.
These features enable hardware-based time-stamping
nodes to participate in the synchronization procedure with
software-based time-stamping nodes in the same network.

CiA 603 specifies that time-stamps are captured at
EOF, when the data frame becomes valid according to
the CAN protocol. That is the last-but-one bit of the
EOF field for the received Sync messages and the last
bit of the EOF field for the transmitted Sync messages.
These are the same conditions that trigger the message’s
transmission or reception interrupt flags. The one CAN
bit time difference (plus the signal delay from the receiv-
er's ACK to the transmitter) between the two triggers is
well known and can be considered in the time slave’s
calculations.

Alllyou CAN plug

CAN-PCl/402

CAN-PCle/402 and CAN-PCle/402-FD

 up to 4 (-FD: 2) high performance CAN interfaces
powered by esd Advanced CAN Core (ACC)

« DMA busmaster and MSI support

o High resolution hardware timestamps

CAN-USB/400

« 2 high performance CAN interfaces powered by
esd Advanced CAN Core (ACC)

o CAN error injection capabilities

« High resolution hardware timestamps

« IRIG-B time code option

The esd Advanced CAN Core (ACC) powered CAN/400
board series is also available in CompactPCl,
CompactPClserial, PMC, XMC and pTCA form factors.

Operating Systems

esd supports the realtime operating systems
VxWorks, QNX, RTX, RTOS-32 and others as well as
Linux and Windows 32/64 Bit systems.

CAN-Tools

Our efficient CAN monitoring and diagnostic tools
for Windows like CANreal, COBview, CANplot,
CANscript and CANrepro are delivered together with
the Windows/Linux driver CD free of charge or can
be downloaded at www.esd.eu.

esd electronics gmbh
Vahrenwalder Str. 207
30165 Hannover
Germany

Tel.: +49-511-3 72 98-0
info@esd.eu
www.esd.eu

US office:

esd electronics, Inc.

70 Federal Street - Suite #2
Greenfield, MA 01301
Phone: 413-772-3170
us-sales@esd-electronics.com
www.esd-electronics.us

https://esd.eu/en/content/products

=
=
L
O
Q
=
o0

En

Time-stamps are captured
from a free-running 32-bit coun-
ter that is incremented in steps of
at least 1 ns and at most 1 ps; it

CAN Controller Internal_Time_Base[15:0]

counts upwards and overruns to
zero. The counter may be inside
the CAN controller or outside.
The software can read anytime its

value. Several CAN modules may Time-Counter

16

1988141 -24n1de)
1o dweys

ceiling(logy(N)) Timer-Counter

<&
l

share the same timer counter. Input 32

It is not necessary to store —F >
a time-stamp for each message Clock ——»
transmitted on the CAN network. Reset —»
The time master needs a time- CPU-Bus <P

cecccsieessccncns

32 Output

+_>

TSU
Time Stamping Unit
(N Time Stamps)

P Interrupt

stamp only for the transmitted
Sync messages, its capture can
be controlled by that message’s
transmit buffer configuration. A
time slave also needs to store time-stamps only for the Sync
messages, but storage is needed for two time-stamps since
the CAN controller’s acceptance filtering cannot distinguish
between Sync and FUP messages that use the same CAN
identifier.

In CiA 603, it is mandatory to provide storage for at least
two Rx_Stamps and at least one Tx_Stamp, or at least two
time-stamps if storage is shared between them. In order to
be able to support multiple time-bases concurrently, it is rec-
ommended to provide at least four times the mandatory mini-
mum storage. Autosar systems may have up to 16 synchro-
nized time-bases.

Separate time-stamping unit

Not all existing CAN controllers support time-stamping
of messages. If they do, time-stamps are usually 16-bit wide
and are stored inside the message buffer structure. If the
position is not configurable, the time-stamps are captured at
the start of frame.

Changing the width of the stored time-stamps to 32 bit
(half of a Classical CAN data field) would require restructur-
ing and enlarging the CAN message storage area. The CAN
driver software would need to be adapted to the new struc-
ture. The solution to this problem is to implement the new
hardware time-stamping function not into the CAN control-
ler itself, but into a separate module, the Time-stamping Unit
(TSU). The CAN controller is only minimally modified, keep-
ing its controller host interface unchanged.

The interface between the CAN controller and the TSU
can be kept simple. The CAN controller provides trigger sig-
nals to capture the time-stamps and the TSU provides infor-
mation that indicates which time-stamps belong to which
messages. If there is more than one CAN controller, they may
share one TSU, otherwise each CAN controller is connected
to a dedicated TSU.

The TSU has its own controller host interface (CHI), to
configure and to control its function, and to read the captured
time-stamps. The TSU may include the free running timer
counter with an optional prescaler, alternatively, an external
timer counter may be connected. The timer counter value may
be cascaded from one TSU to the next and it may be used
as time-base for legacy time-stamping with less resolution.

Figure 3: A separate TSU simplifies the CAN controller re-design, when the
time-stamping is added (Photo: Bosch)

The time-stamps are stored inside the TSU in a circular
buffer, addressed by a counter. The elements of the circular
buffer can also be read by via the CHI. Each time a capture
is triggered, the address counter is incremented; the counter
over-flows to zero. The address counter value is provided to
the CAN controller where it is stored with the message buffer,
instead of the 32-bit time-stamp itself.

The number of time-stamps stored in the TSU can be
decided by a generic parameter, changing the size of the
module. The interface signals of the TSU are, with the excep-
tion of the address counter width, not changed by the size of
the circular buffer.

The TSU may optionally include software debug sup-
port, flags that show whether a time-stamp register contains
new data or whether unread data was overwritten.

The timer counter input vector is not needed when the
TSU implements an internal timer counter. If several TSUs
are cascaded, they share the same timer counter. The TSU’s
interrupt output may optionally be used to signal the cap-
ture of a new time-stamp or when a time-stamp register was
overwritten before it was read. It is not needed for time-base
synchronization.

The CAN controller activates the capture trigger for rel-
evant messages, e.g. when a message is received that is
recognized as Sync message by CAN’s acceptance filtering
or when it is transmitted from a correspondingly configured
transmit buffer.

The 3-bit cyclic stamp counter value for storage of eight
time-stamps shows into which time-stamp register the cur-
rently triggered time-stamp is stored. In CAN controllers
designs that already support (shorter) message time-stamps,
this counter value can be stored instead of the time-stamp,
generally for all messages or only for Sync messages.

Author

Florian Hartwich

Robert Bosch
florian.hartwich@de.bosch.com
www.bosch.com

32

mailto:florian.hartwich@de.bosch.com
http://www.bosch.com

TrControl

HYDAC INTERNATIONAL

|
|

Usability

» Excellent sunlight readability
* Ability to display videos and PDF documents
* Programming and debugging facilitated by CODESYS® V3

HY-eVision? Family

Performance

» Best-in-class CPU performance
* OpenGL graphics with hardware acceleration
* Fast boot-up time
» Sleep mode, wake-up pin and
wake-up timer (<0,5s)

Connectivity

* Optionally GPS and GSM enabled
» Two camera interfaces with picture-in-picture functionality
* Up to 4 CAN interfaces

* Interface for Ethernet cameras

* WLAN interface

www.ttcontrol.com/HY-eVision2-Family

/10 & s> Safe I/0 . Operator
Modules \% Modules ‘/ Interfaces

RN Safety General

o
:\/j‘/ Certified *‘ /ff Purpose
\;‘/“ ECUs 54 ECUs

https://www.ttcontrol.com/products/visualization-hmi-interfaces/rugged-operator-interfaces/?utm_source=MM&utm_medium=Web&utm_campaign=MM_eVision_Banner

