mipi[®] DEVCON

Ahmed Ella Mixel Inc. Jeffrey Lukanc Synaptics

Dual Mode MIPI C-PHYSM/D-PHYSM Use in VR Display IC MIPI ALLIANCE DEVELOPERS CONFERENCE

SEOUL

Outline

- GPU to Pixel VR Display System
- Mixel C-PHYSM/D-PHYSM IP in VXR7200
- Summary

© 2018 MIPI Alliance, Inc.

MIPI.ORG/DEVCON | 2018

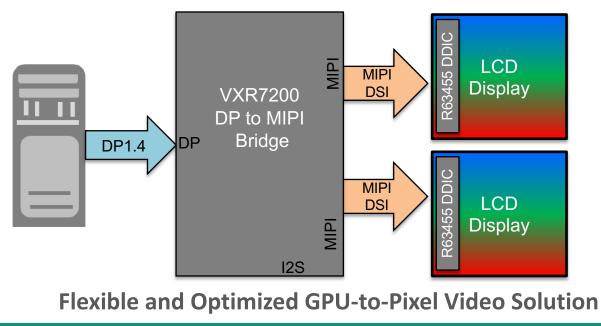
2

Synaptics

GPU to Pixel VR Display System

Synaptics

Mixel, Inc.


© 2018 MIPI Alliance, Inc.

GPU to pixel VR display system overview

Video over DP or USB-C connector from PC or smartphone

MIPI D-PHY or C-PHY interface to displays

MIPI.ORG/DEVCON | 2018

MIPI ALLIANCE DEVELOPERS CONFERENCE 19 OCTOBER 2018 **SEOUL**

© 2018 MIPI Alliance, Inc.

VR Displays Drive Video Interface Technology

- **1.** PPI >1000 eliminates "screen door" effect & enables ability to read text
 - Resolution: 2Kx2K minimum, better = 3Kx3K, ideal = 4Kx4K
- 2. Display responsiveness
 - For crisp LCD images, need to allocate frame time for pixel settling and backlight flashing
 - Additional time required for LCD to settle drives higher DP + MIPI bandwidths
- **3.** VR systems require higher video bandwidths to match display resolutions
 - Need 32Gbps raw bandwidth GPU to display
 - Need DP DSC support to exceed dual 5.5M pixel displays
 - Need MIPI DSC support to exceed 6.2M pixel displays
 - Need SPR support for optimized OLED bandwidth
 - Foveal transport support allow full resolution foveal images at ½ the DP or MIPI bandwidth

Synaptics

Mixel, Inc.

Synaptics VR Bridge & VR DDIC Chipset Overview

- VR Bridge chip features
 - DP1.4 with FEC
 - ~1 Line time video latency
 - Latency = lag = unresponsive HMD video
 - Low latency enables video to match USB Audio
 - SST or MST video formats
 - Either PC or cellphone applications
 - DSC or Synaptics SASPC compression
 - Supports 1-4 DDIC per display
 - D-PHYsM @ 2.5Gbps Tx
 - C-PHYsM @ 2.5Gsym/sec Tx

- VR DDIC chip features
 - Combo C-PHYSM/D-PHYSM Rx
 - DSC or Synaptics SASPC decoders
 - Drive up to 4Kx3K displays
 - Built-in Foveal Transport image overlay
 - FIFO to adjust panel load/scan time
 - No need for buffering video in bridge
 - Pixel overdrive
 - Local dimming

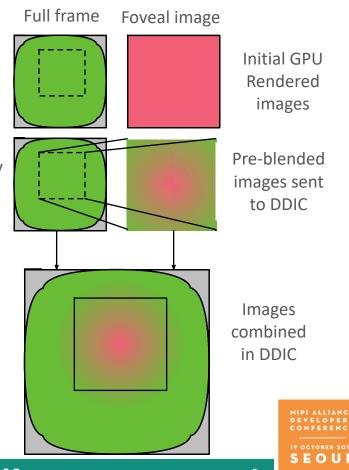
VESA & MIPI Display standards interoperability

VR Bridge manages both DisplayPort and MIPI sides of bridge

- Provides display requirements to GPU via EDID/DisplayID
 - Video formats: Sub-Pixel Render, 420, 444, 8-bit, 10-bit
 - Compression: Compression algorithm and settings
 - Timing: allocate addition frame time for pixel settle and backlight flashing
- Configures the VR DDIC
 - Video formats: Sub-Pixel Render, 420, 444, 8-bit, 10-bit
 - Compression: Compression algorithm and settings
 - Panel scan time, settle time, backlight flash time
 - Pixel overdrive LUT
 - Local dimming settings
 - FIFO bandwidth settings

Mixel, Inc.

Synaptics


Introducing Foveal Transport

Foveal Rendering

- Renders a foveal image and a low res background image
- Both images are combined and sent at full resolution to a display
- Reduces render time, but benefits are not shared with system!

Foveal Transport

- GPU sends both images to displays *without merging them*
- Gaze point location is embedded in the display data
- DDIC scales full frame and overlays the foveal image
- Chromatic and lens distortion algorithms for each image
- Uses ½ the data and ½ the link bandwidth!

Why dual-mode C-PHYSM/D-PHYSM interface is required

- Large legacy display infrastructure requires MIPI D-PHY support for initial bring-up
- MIPI C-PHY required to match DP HBR3 bandwidth and display scan timing
- MIPI DSI-2SM & DCSSM are compatible with DP 1.4 enabling GPU to display compression
- Foveal Transport is compatible with both DP and MIPI DSI-2

Parameter	No	2:1 Compression	2:1 Compression	3:1 Compression	Foveal Transport	2880x1920
	Compression	Bridge to Display	GPU to Display	GPU to Display	GPU to Display	Display
MIPI data/line (bytes)	10,710	6,390	6,390	4,950	6,390	per Eye
MIPI total bandwidth (Gbps)	15	9	9	7	9	per Eye
Minimum MIPI C-PHY link:	6-trio C-PHY	4-trio C-PHY	4-trio C-PHY	3-trio C-PHY	4-trio C-PHY	per Eye
Minimum MIPI D-PHY link:	None	8-lane D-PHY	8-lane D-PHY	8-lane D-PHY	8-lane D-PHY	per Eye
DP data/line (bytes)	17,808	17,808	8,904	5,936	8,904	Host I/F
DP total bandwidth (Gbps)	32	32	16	11	16	Host I/F
Minimum DP link:	4-lane HBR3	4-lane HBR3	4-lane HBR2	2-lane HBR3	2-lane HBR3	Host I/F

Reduced MIPI & DP PHY Lane Usage Saves Power

Mixel C-PHYSM/D-PHYSM IP in VXR7200

Mixel, Inc.

Synaptics

© 2018 MIPI Alliance, Inc.

MIPI.ORG/DEVCON | 2018

10

MIPI ALLIANCE DEVELOPERS

SEOUL

DDIC **HMD DDIC XR Generic System Diagram VR** Flavors • LVDS Environment Video LVDS Depth **DSI RX** DSI RX Smartphone Bridge DSI RX Standalone HMD CSI-2 RX CSI-2 RX CSI-2 RX DSI TX DSI TX DSI TX Tethered VR **Capture Processor/** AP/GPU/SOC Bridge Displays Bridge CSI-2 TX CSI-2 RX Immersive DP RX Devices PC – Holographic USB **Display Port Devices** EVELODEE **Synaptics** Mixel, Inc. **19 OCTOBER 2018** SEOUL © 2018 MIPI Alliance, Inc. MIPI.ORG/DEVCON | 2018 11

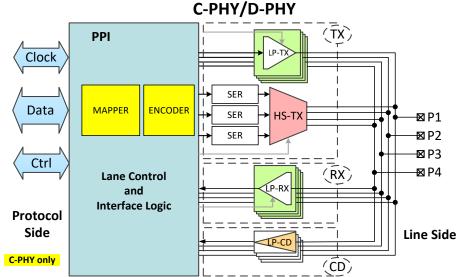
XR System Challenges

- High Bandwidth Requirements
 - High display resolution
 - Faster frame rate
 - Higher sensor resolution
 - High dynamic range
- SOC Design Constraints
 - Low Power / Heat
 - Package / Minimal pin count
 - Minimize die area
 - Support multiple use cases

Power and thermal efficiency is essential for XR

MIPI Spec Attributes

- Typical for XR Market
 - High bandwidth
 - Low power
 - Low EMI

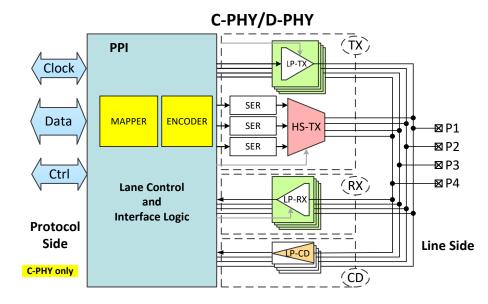


Mixel C-PHYSM/D-PHYSM IP integrated in VXR7200

- Dual Mode PHY
 - D-PHY v1.2
 - C-PHY v1.1
- DSI-2 Controller
- Four Lane in D-PHY mode (10 pins)
- Three Lane in C-PHY mode (9 pins)
- Supports lane swapping and pin swapping features
- Supports de-skew calibration in D-PHY c
- Supports T1 and T2 modes in C-PHY
- BIST with 100% coverage for HM

Mixel, Inc.

Synaptics

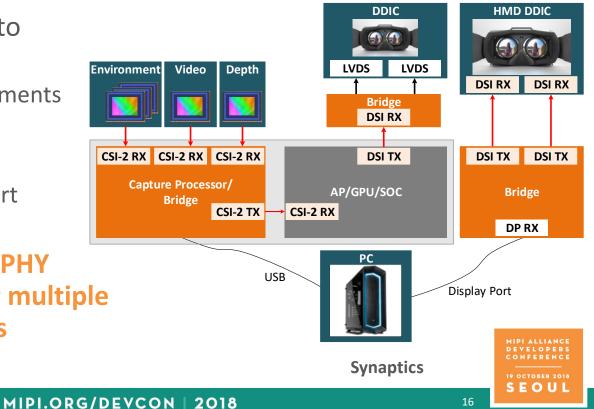

MIPI D-PHYsM and C-PHYsM Comparison

Parameter	D-PHY v1.2	C-PHY v1.1	
Adoption	Long history of use, wide adoption	Accelerated adoption, co- exists with D-PHY	
Power/Gbps	Efficient	Higher efficiency	
Maximum Bandwidth @2.5Gsps	10Gbps for 4 Lanes (10 pins)	17.1Gbps for 3 Lanes (9 pins)	
Minimum number of pins	4	3	
Flexibility	All lanes operate together.	Each lane can work independently.	
Mixel, Inc.		Synaptics	
© 2018 MIPI Alliance, Inc.	MIPI.ORG/DEVCON 2018	14	

Advantage of Mixel Dual PHY MIPI C-PHYSM/D-PHYSM

- Sharing of the serial interface pins
- All D-PHY blocks are re-used for the C-PHY to minimize overhead
- Combo PHY provides the flexibility to support both PHY's using same pins with minimal overhead, while enhancing PPA

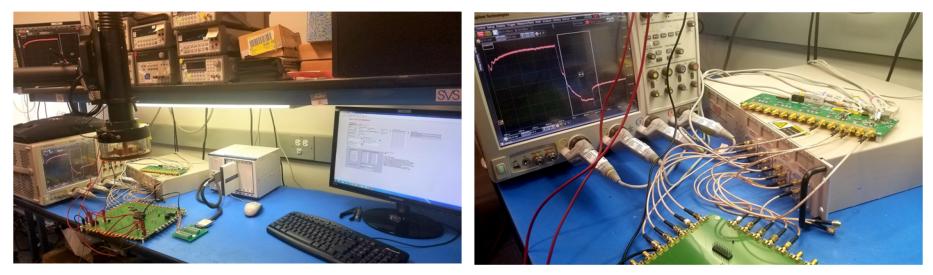
Synaptics



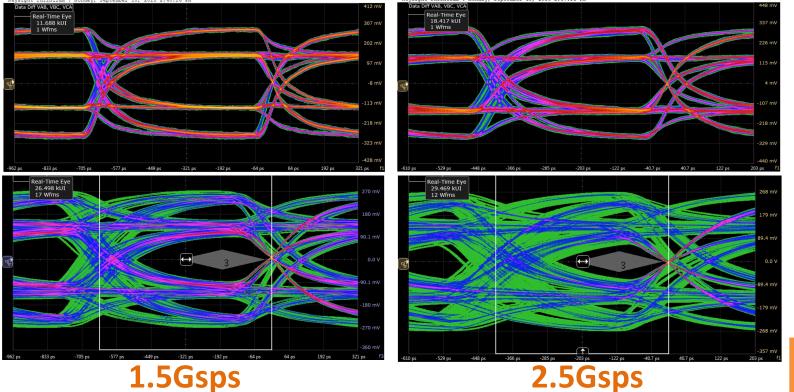
C-PHYsm/D-PHYsm flexibility in XR System Considerations

- System Designers need to consider
 - Total resolution requirements
 - Application targeted
 - Number of ports
 - Number of lanes per port
 - Rate per lane

The flexibility of C-PHY/D-PHY makes it ideal solution for multiple applications and use-cases



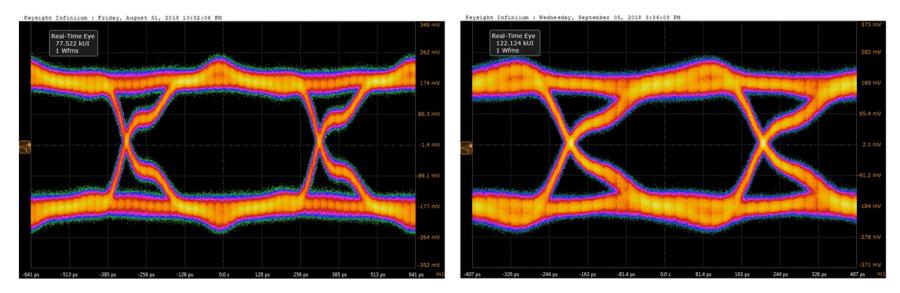
Silicon Results of VXR7200 MIPI Interfaces


Test Bench Setups

Silicon Results of VXR7200 C-PHYSM Interface

© 2018 MIPI Alliance, Inc.

MIPI.ORG/DEVCON | 2018


18

MIPI ALLIANCE

SEOUL

Silicon Results of VXR7200 D-PHYsm Interface

1.5Gbps

Mixel's IP MIPI solution in XR

- C-PHYSM/D-PHYSM Combo_a
- D-PHYsm v1.1
- D-PHYsm v1.2
- CSI-2SM
- DSISM
- DSI-2SM

Mixel, Inc.

© 2018 MIPI Alliance, Inc.

Summary

- Combo C-PHYSM/D-PHYSM offers a flexible and versatile solution for both system bring-up and application usage
- Mixel's C-PHY/D-PHY link speed makes it ideal for most display applications
- The Combo IP has been integrated into many end products by tier-one SOC, Display and Sensor vendors, several in XR applications
- Mixel's C-PHY/D-PHY are available in multiple configurations and Silicon proven in multiple nodes and foundries
- Synaptics achieved first time silicon success integrating Mixel's C-PHY/D-PHY into VXR7200

MIPI.ORG/DEVCON 2018

Synaptics

Synaptics

Mixel, Inc.

© 2018 MIPI Alliance, Inc.

ADDITIONAL RESOURCES

 Demystifying MIPI C-PHY / D-PHY Subsystem - Tradeoffs, Challenges, and Adoption

https://www.chipestimate.com/Demystifying-MIPI-C-PHY--DPHY-Subsystem-Tradeoffs-Challenges-and-Adoption-/Mixel/Technical-Article/2018/04/24

 <u>Synaptics' New Virtual Reality Display Driver and VR Bridge</u> <u>Provide Ultimate User Experience for Emerging Head-Mounted</u> <u>Displays</u>

https://globenewswire.com/news-release/2018/08/28/1557502/0/en/Synaptics-New-Virtual-Reality-Display-Driver-and-VR-Bridge-Provide-Ultimate-User-Experience-for-Emerging-Head-Mounted-Displays.html

Synaptics chip paves the way for dual 2K VR headsets with 1,000 PPI

https://venturebeat.com/2018/08/28/synaptics-chip-paves-the-way-for-dual-2k-vr-headsets-with-1000-ppi/

MIPI DevCon 2016: Implementing MIPI C-PHY

https://www.slideshare.net/MIPI-Alliance/mipi-devcon-2016-implementing-mipi-cphy

Mixel, Inc.

Synaptics

© 2018 MIPI Alliance, Inc.

mipi DEVCON THANK YOU

MIPI ALLIANCE DEVELOPERS CONFERENCE

SEOUL