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Abstract be very different from the designated skew value [1][4][5].
In modern technologies, process variations can be quite
substantial, often causing design timing failures. It is
essential that those errors be correctly and quickly diag-
nosed. In this work, we analyze failures caused by the hold-
time-violations. We investigate the feasibility of using cir-
cuit-timing information to guide the hold-time-fault diag-
nosis. We propose a novel and efficient diagnostic
approach based on timing window propagation. For each
identified candidate, our method locates the source of the
hold-time violation and determines the most probable
defect size. Experimental results indicate that the new
method diagnoses hold-time related defects with very good
resolution.

1. Introduction and Motivation
Sequential designs have to fulfill strict timing require-
ments. The set-up time requirement states that it is neces-
sary for logic values at data inputs of the flip-flops to be
stable before arrival of the active clock edge. The hold time
requirement states that the data inputs should remain stable
for a sufficient period of time after the active clock edge.
The set-up time violation problem which can be modeled
by delay-type defects has been extensively studied. In this
paper, we study the hold-time defects and propose a diag-
nostic approach for them.

Hold time failures [7] may be caused by process variations,
design tool limitations, crosstalk-induced speedup, IR-
drop, clock skew or short paths. In modern technologies
the polysilicon gate lengths have been scaled down below
the wavelength of the light used in optical lithography pro-
cesses. This results in systematic within-die fluctuations
that can affect performance and functionality [3]. 

Among all those factors, two are the most likely to cause
the hold-time violation. The first is the presence of short
sensitizable paths (logic or scan) between flip-flops in the
circuit. What constitutes a short path depends on the clock
skew, path delay, and data hold time. Sometimes short
paths can be eliminated by delay padding. Although delay
padding could theoretically solve the short path problem,
in practice it is an over-design increasing the chip area,
power, and design time without improving performance
[12].

The second typical cause of hold-time failure is clock skew
between the flip-flops. Due to process variations and the
inaccuracy of design tools, clock skew in a real chip may

In [5], clock skew sources are classified into four catego-
ries: systematic offsets, random offsets, jitter, and drift.
Systematic offsets are the skews caused by using the nomi-
nal-component SPICE-simulation results. Random offsets
are due to intra-die process variations such as channel
length and gate width variations. Drift is caused by temper-
ature variation which results in low-frequency skew
changes. Jitter, especially from the voltage noise, may
cause high frequency timing variations. Most of the zero
skew clock papers address only the systematic offsets. In
[5], the authors mention jitter as the most challenging
source of skew in modern high-performance micro-proces-
sors. Research results [5][9] have shown that PLL jitter and
the uncertainties in the clock distribution network can
cause difficulties in achieving accurate skew budgets. The
data reported from IBM and Compaq show skew for the
clock grids in the range of 50-70ps [1][12].

Figure 1 shows a timing diagram of a digital circuit. Let
thold be the hold time for a flip-flop DFF1, let tskew be a
clock skew between DFF1 and DFF2, and let tp be the prop-
agation delay from the Clk2 activation to the DFF2 regis-
tering data. Suppose that between DFF2 and DFF1 there is
a sensitizable path M whose delay is td, and the following
condition is satisfied:
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In such a case a hold-time failure may occur and wrong
logic value may be registered by DFF1.

All the papers on hold-time fault diagnosis [2][3][6]-
[8][10][13][16] address this type of violation on short scan
paths. Those approaches make explicit use of the scan
chain properties, trying to localize a possible faulty scan
cell in as narrow a range as possible. Those methods can-
not be easily extended to diagnosing hold-time violations
on the functional parts of the circuit. 

Diagnosis of the hold time faults that occur on data paths
has not yet been addressed. Here, we diagnose the hold-
time defects occurring in circuits whose timing dependen-
cies fulfill Eq.(1). We focus on two main causes of hold-
time violation: the reduced td, and the increased tskew. 

In the design phase, timing is estimated by static timing
analysis (STA) based on parameters extracted from layout.
To account for variability, the slowdown and setup times
are computed using the worst-case library. The best-case
library is used to evaluate the speedup or hold-time. It is
possible that a circuit which passes STA may malfunction
after it is manufactured. The purpose of this work is to
develop a methodology to locate the probable cause of
hold-time failures in manufactured faulty chips using fail-
ure responses observed from tester.

We propose a hold-time defect diagnostic method based on
the timing information extracted from layout. We collect
the observed failure responses and process them with the
algorithm. We first determine whether the failure might
possibly be caused by a hold-time fault. If so, our approach
back-traces sensitizable paths from the failing outputs to
find the initial candidate sites. Then we inject each candi-
date fault into the circuit, using the hold-time fault model,
and perform timing-based fault-simulation. Our novel
technique, the Negative Timing Window Propagation
(NTWP), is very efficient. It not only reports the fault can-
didate-sites accurately but also suggests their probable
causes, such as speedup on the short paths or increased
clock skew. It also reports the amount of speed-up (skew)
introduced by the reported candidates.

The rest of the paper is organized as follows. In Section
2, we introduce the preliminary concepts and analyze the
hold-time fault behavior. In Section 3, we describe our
diagnostic algorithm. In Section 4, we discuss the feasibil-
ity of our method, and its extensions to multiple hold-time
faults. In Section 5, we report experimental results. Section
6 concludes the paper. 

2. Preliminary
A good machine is a circuit with no defects. Logic values
on the primary outputs (POs), or internal wires, of a good
machine are the good machine values (GMV) for the corre-
sponding test pattern T. For a simplified explanation, POs
represent all the primary outputs and scan cells.

When multiple faults exist in the circuit, a test pattern may
activate several faults and create multiple-fault behaviors. 

Each failing pattern p in the given diagnostic test set T is
classified into one of the following two types:

Type-1 failing pattern: p can activate only one fault and
observe its effect. Other faults cannot be activated or their
faulty effect cannot be observed.

Type-2 failing pattern: p can activate multiple faults and
observe their faulty effects.

2.1  Hold Time Fault Analysis
To model the hold-time-violation defects, we use the hold
time fault models similar to those proposed in [11].

Fault_Model_1: All the flip-flops, except the source flip-
flop of a target path, receive the clock-activating edge
within the bounds of timing constraints imposed on the
skew. The source flip-flop receives the clock-edge earlier.

Fault_Model_2: All the flip-flops, except the sink flip-flop
of a target path, receive the clock activating edge within
the timing constraints imposed on the skew, whereas the
sink flip-flop receives the clock-edge later.

These two models do not cover all the complex hold-time
defect behaviors. They divide all the flip-flops into two
groups. But in reality, due to complex relationships
between the activation times on different flip-flops, these
two models may not capture all the possible hold-time
defects. Instead, they capture the most frequently occurring
hold-time violations. 

To activate and observe the failure responses caused by
hold-time faults, we need to satisfy three conditions. Here,
hold-time fault is defined as the situation that the thold of a
flip-flop DFF1 (in figure 1) fulfills the timing relationship
stated by equation (1). A timing failure that might occur is
that DFF1 registers incorrect data.

Activation Condition: For a fault_model_1, a transition
between the current and the next time frame must occur at
the output of the source flip-flop of a path (Q2). This is the
necessary condition to activate the hold time fault [7]. For
a fault_model_2, the transition must occur at the input of
the sink flip-flop of a path (D1). This transition may be
caused by multiple flip-flop sources.

Sensitization Condition occurs when the activation transi-
tion (at the source) is propagated to a sink flip-flop. This
condition should be satisfied before clock capture for
fault_model_1, and after clock capture for fault_model_2. 

Timing Condition is . There are four
terms in this inequality and any of them may change due to
the signal or design integrity problems. Path delay td might
be reduced by crosstalk, whereas tskew, thold might increase
due to the process-parameter variations.

Those conditions form the necessary and sufficient condi-
tions for hold-time failure to be activated and observed.

The hold time faults do not have to be detected by at-speed
tests. A single cycle test using a slower clocking frequency
(like stuck-at test) is sufficient to detect them. However, to
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diagnose a hold-time fault, timing information is required
because of timing conditions. In practice, running the test
at different frequencies can exacerbate the power con-
sumption such that it can affect the test result for hold-time
fault. Similarly, applying the test at different voltages can
result in non-obvious results (lower voltages sometimes
cause the hold-time failure to disappear).

Although we use a single clock design as an example illus-
trating those three conditions, the hold-time violation can
also occur in multi-clock and wave-pipelined designs. The
analysis in this work is also applicable to those situations.

In this study, we assume that a single fault is present in the
circuit and that it is modeled by one of the two introduced
fault models. We also assume that the hold-time fault can
manifest itself only on the data paths. If a chip fails on scan
paths during the loading or unloading phases, we can apply
the methods in [3][7] to identify the faulty locations effi-
ciently before we perform the logic test. 

2.2  Hold-time Fault Injection
Our diagnostic method is simulation-based. To determine

whether a candidate site could be the source of a failure,
we inject a hold-time fault and perform simulation. The
hold-time fault injection is different from the injection
methods for other fault models. For a fault_model_1, if
there is a transition at the path source flip-flop’s output
(activation condition), we use the next time-frame good-
machine value (GMV) to replace the current time-frame
GMV. There are subtle differences between the hold-time
fault and the delay fault, and their detection conditions. In a
delay-fault test, the observation points must first be estab-
lished with the failing value (typically by scanning it in).
Then the sample will overwrite the value with a passing
value. If the passing value does not arrive by the setup
time, then the failing value remains, it is scanned out, and
delay failure response is observed. In a hold-time test, the
observation point must be initialized with a value that coin-
cides with the correct value. If there is shoot-through of the
value in the flip-flop previous to the launch flip-flop, then
the test will fail. For this reason some delay tests may not
be useful for hold-time detection because even if there is a

hold-time fault in the real chip, there would be no mis-
match at the tester. The ATPG method for hold-time fault
in [11] could be used to produce high quality tests for hold-
time faults. 

From now on, our analyses will be based on
fault_model_1. For clarity, we omit the scan circuitry. In
Section 4, we will discuss the differences between the two
fault models from the perspective of simulation and diag-
nosis. Figure 2 shows a simple example, how to inject the
hold-time fault based on fault_model_1. Suppose there is a
hold time fault f (fault_model_1) on DFF1 along the path1:
DFF2-G3-DFF1. The good machine value for {DFF1,
DFF2} in time frame 0 is scanned-in as {0,0}. After a good
machine simulation, the next time-frame’s GMVs on the
data input of both flip-flops are equal to logic 1. Since
DFF2 satisfies the necessary hold-time fault activation
condition, i.e., there exists a transition between the current
time frame and the next one. For DFF2 we use the next
time frame’s GMV, which is logic 1, and replace the current
time frame’s GMV, logic 0.

3. Our Approach
In this work, we demonstrate feasibility and efficiency of
using timing information such as path delay and clock
skew for hold-time fault diagnosis.

We obtain the circuit delay and timing information from
the SDF files [17] which contain the gate timing, delays,
and the interconnect delay. For each pin-to-pin and inter-
connect, SDF provides the rising/falling transition delays.

Our diagnostic algorithm uses the observed failure
responses as the input. We first check the activation and
sensitization conditions to see if the cause could be the
hold-time violation. If so, our algorithm back-traces from
the observed failing outputs along the sensitizable paths
and identifies the initial fault candidates, Finitial. Each can-
didate in Finitial is injected (one at a time) into the circuit as
a hold-time fault. The algorithm based on the timing and
input test pattern performs the functional timing simula-
tion. Once the faulty effect has been propagated to an
observation point, we check the timing conditions. If the
condition stated by Eq. (1) is fulfilled, we say the hold-time
faulty effect can be observed at this point. Finally, we
weight each candidate by its faulty behavior capability to
match the observed failure responses.

3.1  Functional Timing Simulator 
We have developed a framework which allows us to evalu-
ate the diagnostic algorithm. We do not include the imple-
mentation details here due to the page limit. Instead, we
give a simple example to show how we emulate the real
circuit timing behavior for given test sets. All examples
discussed in this paper use a pair of delay values to repre-
sent the pin-to-pin rising and falling delays. However, in
our framework these values are represented by pairs of
delay ranges. Interconnect delays are taken into account in
our framework.
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   Pattern P:
1. Scan-in both flip-flops with logic value 0
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Fig. 2: Example of Hold-Time Fault Injection
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Consider the example in
Figure 3. The numbers
beside each gate’s
inputs are the corre-
sponding rising/falling
delays from the input to
the output of that gate.
We ignore all the inter-
connect delays to sim-
plify our explanation.

For the pattern P1: {ABCD}: {r 1 r 1} (r = rising), there are
rising transitions on E and F. Because the logic value “1”
is a controlling value for the OR gate g1, the circuit delay
will be decided by the earliest transition, which occurs on
E. So even though there is a longer delay on F, its effect
cannot be propagated further. The longest path delay in the
good circuit for this pattern is 5+7=12. The path which
contributes to the circuit delay is from A to Z.

For the pattern P2: {ABCD}: {f 1 f f} (f =falling) there are
falling transitions on E and F, because 0 is a non-control-
ling value for the OR gate g1. The circuit delay will be
decided by the latest transition, which occurs on F. Note
that F’s delay is defined by C and not by D, whose delay is
longer. The longest path delay in a good circuit mode for
this pattern is 6.2+7.7=13.9. A path from C to Z determines
the circuit delay.

Unlike the static timing analyzer, our simulator considers
the circuit’s functionality for each input pattern. 

3.2  Negative Timing Window Propagation (NTWP)
In this section, we describe our novel simulation technique
which determines fault candidate’s capability of explaining
the failing and passing pattern responses.

To emulate the speed-up effects in the circuit, we introduce
a negative timing window (NTW) of a fault candidate as a
delay interval [a,b] with non-positive values of a and b.
The absolute value of a, Abs(a), is the maximum speed-up
size, and Abs(b) is the minimum speed-up size. NTW also
captures a situation when the source flip-flop of the data
path receives the active clock-edge earlier (fault_model_1).

We perform a conventional interval-arithmetic on the tim-
ing windows. Let T1 = [ta,tb] and T2 = [tx,ty], we have:

For a given pattern P and a fault candidate f in the initial
fault list Finitial, we begin the timing-fault simulation by
assigning at the faulty location f the initial negative timing
window (NTW) [-L,0]. L is the longest path delay in the
circuit. For each candidate, those windows will be propa-
gated (and possibly shrunk) along the sensitized paths.

The examples in figure 4 show how the negative timing
windows are updated as they propagate through an AND

gate. For other gate types and combinations of rising and
falling signals, the rules are similar. If the faulty effect of f
propagates to a signal line, the corresponding NTW can
also propagate there. The symbol R (F) stands for a rising
(falling) transition on the signal line.

The example in Figure 4(a) shows how the upper bound of
an NTW is updated. Suppose the faulty effect propagates to
A, the NTW on A is [a,b], and the current simulating pat-
tern produces falling transitions on both A and B. To propa-
gate the speed-up effect from A to Z, the delay value on A
and B must satisfy the condition , where t1 and
t2 are the fault-free delay values calculated as described in
Section 3.1. In Figure 4 examples, we assume that the pin-
to-pin rising and falling delay values are the same for A-Z
and B-Z. The upper bound of the NTW must be equal to or
smaller than min((t2-t1), b). The new NTW at Z becomes [a,
min((t2-t1), b)]. 

In Fig. 4(b), the NTWs simply propagate to each branch
from the stem. In Fig. 4(c) we have a reconverging fanout.
The faulty effects propagate to both inputs from different
fanout branches of the failure’s source. The negative tim-
ing window at A is NTWA = [a,b] and at B is NTWB =
[c,d]. Suppose that the inputs on the AND gate have falling
transitions. We first derive the delay value range at Z fol-
lowed by the NTWZ. In this example, the delay range at A
is DA = [t1+a, t1+b] and the delay range at B is DB =
[t2+c, t2+d]. The delay range at Z is the [min(t1+a,t2+c),
min(t1+b, t2+d)] (a,b,c and d are non-positive values).

To determine the NTWZ, we consider two cases. 

Case 1:  which implies that the delay on one
of the inputs dominates the delay at Z regardless of the
delay changes at the other input. In this case, we simply
propagate the NTW from the input which has a bigger
speed-up to Z.

Case 2:  which implies that both inputs may
contribute to the delay at Z. We will analyze the overlapped
delay range only. The non-overlapped delay range is the
same as the case 1 above. Here, we assume DA=DB.

Case 2.1: If  then
, which means that a defect of any

size in the negative timing window A or B could produce a
speed-up at Z. We merge these two negative timing win-
dows with no loss of information.

Case 2.2 If , we can apply a
union operation on these two NTWs and form a wider win-
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Fig. 3: Timing based simula-
tion example
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dow. Doing so will degrade the resolution because some
delay values which are neither in NTWA nor in NTWB could
be included in the new window. To overcome this problem,
we can retain NTWA and NTWB and propagate them. The
more disjoint windows we keep, the more the performance
of the simulation degrades. In our implementation we store
up to four disjoint timing windows on each signal. Experi-
mentally, this heuristic achieves a good trade off between
resolution and performance.

For each fault candidate, we perform the negative timing

window propagation applying all test patterns. If the nega-
tive timing window can propagate to any primary output
under a given pattern P, we use a tuple of four components,
{f, P, POi, NTWi}, to store this information. It records that
the candidate f’s negative timing window NTWi can propa-
gate to the primary output POi under the pattern P.

Suppose that at the capture time, for a given pattern T we
cannot observe delay failure on the output flip-flop POi.
Let M be a sensitizable path to POi passing through the
fault site. If we have recorded a tuple at POi for a pattern P,
the lower bound of NTWi, say a, must be bigger than

, where t*skew= tskew+ thold - tp. tskew is the

clock skew between the source flip-flop and the sink flip-
flop of the path M, and  is the path delay value at POi

calculated for the fault-free circuit. tp represents the propa-
gation delay from the source FF clock activation time to
the source FF registering-data time. thold is the hold-time
requirement for the sink flip-flop of the path M. This is
illustrated in figure 5.

From our experiments, we found that L must be preset to a
value bigger than the possible speed-up (skew) defect size.
Otherwise, the upper bound modifications may cause the
upper bound to become smaller than -L and produce no
candidate. Presetting L to the longest path delay value
guarantees that this situation will not happen. In Section
3.4 we will explain how to extract useful information from
those tuples and how to prune further the unlikely candi-
dates. 

3.3  The Diagnostic Algorithm
Our algorithm to diagnose the hold-time related defects is
based on the timing information and delay simulation. We
make an assumption that each failing pattern can be attrib-
uted to a single fault location. Our algorithm is capable of
identifying multiple fault locations as long as each failing
pattern is affected by only one fault. We also assume that,

if two candidates have the same explanation capabilities
for a set of failing and passing patterns, the candidate with
the smaller speedup size has a higher probability of being
the real defect.

In Figure 6, we
state our algo-
rithm for diag-
nosing hold-
time defects
modeled by the
fault_model_1:

For a failing
pattern T, we
path-trace from
each failing
flip-flop and
initialize the

fault candidate list Finitial. All the flip-flops in the failing
flip-flop’s fanin cone and the failing FF itself are the initial
fault candidates. Based on the single-fault per pattern
assumption, the initial candidate faults must reside in the
intersection of fanin cones of different failing FFs. If this is
not the case, we eliminate the fault from Finitial.

Before performing the diagnosis, we verify the possibility
that the failure is caused by a hold-time defect. 

Step 1: If for a pattern T there is no sensitizable path
from the candidate site to the failing flip-flop, eliminate
this fault from the Finitial list.

Step 2. (Hold-time fault_model_1) If for a pattern T in
the good machine there is no transition at the fault can-
didate, eliminate this fault from the Finitial.

For each candidate in Finitial we check to see if the activa-
tion and sensitization conditions (Section 2) are fulfilled. If
any of the conditions is not satisfied, this candidate is elim-
inated from the initial fault list. This checking step is per-
formed for both fault models, even though we presented
the details only for the fault-model_1.

If Finitial is not empty, continue. Otherwise, the failure is
not caused by a hold-time fault. The algorithm stops. For
each candidate in the Finitial we apply the NTWP tech-
nique, simulate the patterns, and record the tuples. We
prune the unlikely candidates and report the candidate set
Fafter_NTWP. In the refinement step, if a group of candidates
has the same explanation capability, we deduce the most
likely speedup size for each candidate. The candidates are
ranked by their speedup sizes. Candidates with smaller
speedup sizes are reported earlier. Finally, we post-process
the most probable candidate sites and paths and deduce the
most possible causes of failures.

3.4  Pruning Rules
The rules for pruning the impossible candidates are derived
based on the relations between the negative timing win-
dows at the observation points. 
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Rule 1: For two tuples {f, P, PO1, NTW1} and {f, P, PO2,
NTW2}, if failure responses are observed on two primary

outputs PO1 and PO2, but , then f is not
a candidate. In this case the negative timing windows have
a conflict as shown in figure 7.

Fig. 7: Timing Window Conflicts
This rule eliminates those candidates which introduce
inconsistent speed-up values when propagated to different
failing POs.

Rule 2: If for a tuple {f, P, PO1, NTW1} the summation of
the lower bound of NTW1 and the path delay value calcu-

lated on PO1, t1+a, is bigger than t*skew, where t*skew=
tskew+ thold - tp, then f is not a candidate. From our previous
analysis (Eq. (1)), we know that if a path delay is bigger
than t*skew, the hold-time violation does not occur. Figure 8
shows a situation where t1 is the fault-free path delay value
calculated as described in section 3.1.

Fig. 8: Rule 2.
Rule 3: If we do not observe a failure on PO1, but the sum-
mation of the upper bound of NTW1 and the delay value

calculated on PO1, t1+b, is smaller than t*skew, then f is not

a candidate for P. Based on Eq. (1), if t*skew is bigger than
t1+b, we should observe the hold-time failure on PO1.

In our implementation, instead of deleting a candidate
which fails the rules, we assign a penalty for each failed
rule. After simulating all the fault candidates, we rank them
based on their penalty scores. The better-matched candi-
dates have a higher rank.

3.5  Refinement
In the refinement step, we consider all the failing and pass-
ing patterns which can be explained by the fault candi-
dates. For each fault we collect NTWs and construct a
wave(t). The wave(t) is built such that for each delay t, we
assign a value equal to the number of NTWs which cover t.
For each fault, the most probable is presumed to be the
delay value/range with the highest weight. We measure the
waveforms of the candidates by their integrals from -L to 0,
which yield the total area Area(t) covered by a wave(t):

 . We define the ratio function as

. For each candidate we

obtain three points -- tlb, tmid, and tub -- by setting the
ratio(t) to be 0.3, 0.5, 0.7. 

For locating the fault candidate, a clustered distribution
graph w(t) is more meaningful than a sparse distribution
graph. This can be quantified by the density function den-
sity(f) = [Area(tub)-Area(tlb)] / (tub - tlb). A higher density
indicates that the candidate’s delay value is more clustered
at a smaller speedup range. In figure 10, all waveforms
cover the same area. The candidate which has the speedup
distribution (c) is more probable than the candidate which
has the speedup distribution (b).

Fig. 10: Speedup distribution graph example
After obtaining the distribution graphs for all the faults, we
might find that two faults have about the same density.
Based on our assumption stated in Section 3.3, a fault
which has a smaller tmid is a better candidate than the fault
which has a bigger tmid. In figure 10, the ranks of three can-
didates are (c) > (a) > (b).

3.6  Post-processing the Candidates
After the refinement step, the diagnostic algorithm termi-
nates with a list of fault candidates and sensitizable paths
from the candidate sites to the observed failing outputs. In
the post-processing step, we report possible candidates
based on assumptions about the defects. Here we consider
short path speed-up and clock skew as possible causes of
failures. Since it is impossible to distinguish which of those
two failure causes is the culprit, we report faulty sites
based on each of those assumptions along with the sizes of
timing failures. A failure analyzer could decide which fail-
ure to target first, based on manufacturing experience. 

4. Discussion
When we inject a hold-time fault_model_1 into a circuit,
we use the next time frame GMV to replace the current
GMV on the transitioning path-source flip-flop. In case of
the fault_model_2, the sink flip-flop of a path receives the
clock edge later, and to inject a fault, every flip-flop except
for the sink flip-flop needs to replace its current time frame
GMV with the next time frame GMV. The fault simulation
process is the same as for the fault_model_1.

For the fault_model_1, we use the current time frame to
perform back tracing, identify the sensitizable paths, and
use the source/sink flip-flops of those paths as the initial
fault candidates. For the fault_model_2, we perform good
machine simulation based on the next time frame. We per-
form back-tracing, based on the next time frame GMV,
identify sensitizable paths, and use the source/sink flip-
flops of those paths as the initial fault candidates. 

For the fault_model_1, we inject the initial NTW as [-L,0]
at the fault site and perform timing-based simulation in the
current time frame. For the fault_model_2, we inject the
initial NTW [-L,0] at each transitioning flip-flop for which

TW
1

TW
2

∩ Φ=

         a                   b           c                         d        0

NTW1 NTW2
Speed-up

0               t*skew        t1+a       t1+b               t1   

NTW1
 Delay on PO1

0    t1+a             t1+b       t*skew            t1   

NTW1

Delay on PO1

Fig. 9: Rule 3.

Area t( ) wave t )( ) td

L–

0

∫=

Ratio t( ) Area t( )= Area L–( )⁄

-L           0 -L          0 -L           0
(a) (b) (c)
              



there exists a sensitizable path terminating at the failing
observation point in the next time frame of the pattern. 
In practice, multiple flip-flops could be the source of hold-
time failures as shown in figure 11. However, we found
that even though multiple hold-time faults exist in the cir-
cuit, many failing patterns can activate and observe the
faulty effect of only one of them. These failing patterns fall
into our type-1 failing pattern category. 

The diagnostic algorithm proposed in Section 3.3 can be
altered to diagnose failure responses caused by multiple
hold-time-fault sites.

A. Initial Fault Candidates

For multiple-fault diagnosis, the initial candidate fault
must reside in at least one of the fanin cones of different
failing flip-flops of the given pattern.

B. Diagnosis Step

First we perform the diagnostic algorithm based on the sin-
gle fault per pattern assumption to find candidates which
could explain some failing patterns. If multiple faults exist
in the circuit, but each of them has a test pattern which can
activate and observe only one faulty behavior (type-1 fail-
ing pattern), then every fault site could be identified cor-
rectly and easily. However, if every failing pattern is
affected by multiple faults (type-2 failing pattern), the pro-
posed algorithm may face some difficulties. To overcome
this limitation, we use a failing-PO-partition technique pro-
posed in [14]. The basic idea of this technique is to parti-
tion the failing POs into groups such that each group of
failing POs is affected by only one or few faults. After the
partitioning, most of the type-2 failing patterns are trans-
formed into several type-1 failing patterns so that the pro-
posed algorithm can be applied further. This partitioning
technique is very useful especially for big industrial
designs, most of which are full-scanned and very flat, with
a large number of observation points. 

Experimental results have shown that most of the failing
patterns are of type-1. For small number of test cases
whose failures exhibit only type-2 patterns, our partition
technique can help find the correct candidates. 

C. Post-processing Step

After finding multiple locations by using type-1 patterns
and the failing-PO-partition technique, we rank the candi-
date sites by their capability of explaining failure
responses. Then we group those higher ranked candidates
together. If layout information is available, based on either
speedup or clock skew assumptions, we can find the most
likely defect locations.

5. Experimental Results

5.1  Results for Single Hold-time Fault
Since obtaining accurate timing information is not the main
purpose of this work, we used static timing information
instead of accurate timing information which could be
obtained from SPICE simulation or SDF files. 

We evaluated diagnostic capabilities of our algorithm using

the hold-time fault-simulation framework. Our experi-
ments were set up as follows. We randomly injected a hold-
time fault into the circuit, performed simulations, and col-
lected the failure responses for the given tests. We fed the
failure responses into the diagnostic tool using the same
tests. These algorithms reported possible faulty locations.
For each circuit, we performed 100 times random fault
injections to obtain different “faulty” circuits and average
diagnostic results. The test set for diagnosis was generated
by a commercial tool targeting all testable stuck-at faults.

Our diagnostic algorithm reports lists of paths and the
source/sink flip-flops of those paths. In addition to paths,
we assign weights to the flip-flops. The weight of a flip-
flop is equal to the number of reported paths which contain
it. We order the flip-flops with the highest weight reported
first. A rank is a position on the ordered list of fault sites,
the first fault of which matches the injected fault site. This
is the first hit rank (FHR).

Table 1 shows the diagnostic results for full scanned ITC99
benchmark circuits whose sizes are bigger than 5K gates.
The first and second columns show the circuit names and
sizes. The third column shows the average number of the
initial fault candidates before using the timing information
to prune the unlikely candidates. The fourth column is the
number of candidates reported by the algorithm. A candi-
date consists of a number of paths from source flip-flop to
sink flip-flop. 

The fifth column is the average first hit rank of our algo-
rithm. The last column shows the runtime (T) of the algo-
rithm. The algorithm was implemented in C language, and
we ran all the experiments on a PC under Linux OS with a
2GHz CPU and 1GB memory.

Resolution is the ratio of the number of injected faults over
the count of total reported candidates. Our algorithm can
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Table 1: Results for Single Fault

Circuit # of 
gates

# of 
Init. f

# of 
Cand.

FHR T 
(sec)

B14 5.7k 6.1 2.2 1 0.78

B15 10.7k 7.4 2.4 1 1.68

B17 29.7k 8.6 3.3 1 5.25

B18 81.7k 8.2 3.4 1  27.47

B20 11.4k 9.2 2.9 1 2.04

B21 11.8k 8.8 2.8 1 1.98

B22 18.0k 7.8 3.1 1 3.78

Avg. 8.01 2.87 1 6.14
              



locate the injected fault locations with a very low first-hit
rank and good resolution. Because we only injected one
fault into a circuit, our algorithm can always find the best
faulty site and rank it as the number one candidate.

5.2  Results for Multiple Hold-time Faults

In the second round of experiments, we randomly injected

two or three hold-time faults into the circuits and collected
the failure responses. If too many flip-flops seemed to be
the source of hold-time failure, we simply screened the
clock network instead of performing diagnosis. For each
circuit and a given number of faults, we performed 100
times random fault injections to get varying “faulty” cir-
cuits. Then we obtained the average diagnosis results for
those test cases. Table 2 shows the experimental results to
diagnose the failure responses caused by multiple hold-
time faults. The first column shows the circuit name. The
second column shows the number of fault candidates
reported by different injected fault numbers before using
timing information. In the table, “2-f” refers to the results
for two hold-time faults injections and “3-f” to three hold-
time faults. The third column shows the number of
reported candidates after using timing information. The
last column shows the diagnosability (DA) for different
fault density. Diagnosability is defined as the ratio of the
correctly identified fault count over the total number of
injected faults.

The results suggest that for the majority of cases our
approach can identify the injected faulty locations with
good resolution. By using timing information, our
approach significantly reduces the number of reported can-
didates. The FHR data for all those cases are less than 1.2
on average. The performance of our algorithm is linear
with the number of initial fault candidates.

6. Conclusions
We have proposed timing-information-based diagnosis of
hold-time related defects. We developed a novel yet simple
timing-driven hold-time fault simulation method. We pro-

posed a diagnostic approach of the hold-time violations
which could be caused by short path speed-up or clock
skew. The proposed approaches achieve very good resolu-
tion and high performance. 
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