
IEEE COPYRIGHT NOTICE

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other
works.

Accepted to be published in: Proceedings of the 2020 IEEE International Symposium on Hardware Oriented Security
and Trust (HOST), May 4-7, 2020, San Jose, CA, USA.

ar
X

iv
:1

91
0.

13
06

3v
3

 [
cs

.C
R

]
 2

 D
ec

 2
01

9

MaskedNet: The First Hardware Inference Engine
Aiming Power Side-Channel Protection

Anuj Dubey∗, Rosario Cammarota†, Aydin Aysu∗
∗Department of Electrical and Computer Engineering, North Carolina State University

{aanujdu, aaysu}@ncsu.edu
†Intel AI, Privacy and Security Research

rosario.cammarota@intel.com

Abstract—Differential Power Analysis (DPA) has been an
active area of research for the past two decades to study the
attacks for extracting secret information from cryptographic im-
plementations through power measurements and their defenses.
The research on power side-channels have so far predominantly
focused on analyzing implementations of ciphers such as AES,
DES, RSA, and recently post-quantum cryptography primitives
(e.g., lattices). Meanwhile, machine-learning applications are
becoming ubiquitous with several scenarios where the Machine
Learning Models are Intellectual Properties requiring confiden-
tiality. Expanding side-channel analysis to Machine Learning
Model extraction, however, is largely unexplored.

This paper expands the DPA framework to neural-network
classifiers. First, it shows DPA attacks during inference to extract
the secret model parameters such as weights and biases of a neu-
ral network. Second, it proposes the first countermeasures against
these attacks by augmenting masking. The resulting design uses
novel masked components such as masked adder trees for fully-
connected layers and masked Rectifier Linear Units for activation
functions. On a SAKURA-X FPGA board, experiments show that
the first-order DPA attacks on the unprotected implementation
can succeed with only 200 traces and our protection respectively
increases the latency and area-cost by 2.8× and 2.3×.

Index Terms—Machine Learning, Neural Networks, Side-
Channel Analysis, Masking.

I. INTRODUCTION

Since the seminal work on Differential Power Analysis
(DPA) [1], there has been an extensive amount of research
on power side-channel analysis of cryptographic systems.
Such research effort typically focus on new ways to break
into various implementations of cryptographic algorithms and
countermeasures to mitigate attacks. While cryptography is
obviously an important target driving this research, it is not
the only scenario where asset confidentiality is needed—secret
keys in the case of cryptographic implementations.

In fact, Machine Learning (ML) is a critical new target with
several motivating scenarios to keep the internal ML model
secret. The ML models are considered trademark secrets,
e.g., in Machine-Learning-as-a-Service applications, due to the
difficulty of training ML models and privacy concerns about
the information embedded in the model coefficients such as
weights and biases in the case of neural networks. If leaked,
the model, including weights, biases and hyper-parameters can
violate data privacy and intellectual property rights. Moreover,
knowing the ML classifier details makes it more susceptible to
adversarial ML attacks [2], and especially to test-time evasion

Fig. 1. Motivation of this work: DPA of the BNN hardware with 100k
measurements. Green plot is the correlation trace for the correct 4-bit weight
guess, which crosses the 99.99% confidence threshold revealing the significant
leak. Blue plot is for the 2’s complement of the correct guess, which is an
expected false positive of the target signed multiplication. Other 14 guesses
do not show correlation.

attacks[3], [4]. Finally, ML has also been touted to replace
cryptographic primitives [5]—under this scenario, learning the
ML classifier details would be equivalent to extracting secrets
from cryptographic implementations.

In this work, we extend the side-channel analysis framework
to ML models. Specifically, we apply power-based side-
channel attacks on a hardware implementation of a neural
network and propose the first side-channel countermeasure.
Fig. 1 shows the vulnerability of a Binarized Neural Network
(BNN)—an efficient network for IoT/edge devices with bi-
nary weights and activation values [6]. Following the DPA
methodology [7], the adversary makes hypothesis on 4 bits of
the secret weight. For all these 16 possible weight values, the
adversary computes the corresponding power activity on an
intermediate computation, which depends on the known input
and the secret weight. This process is repeated multiple times
using random, known inputs. The correlation plots between the
calculated power activities for the 16 guesses and the obtained
power measurements reveal the value of the secret weight.

Fig. 1 shows that at the exact time instant where the
targeted computation occurs, a significant information leakage
exists between the power measurements and the correct key
guess. The process can be repeated reusing the same power
measurements to extract other weights. Hence, it shows that
implementations of ML Intellectual Properties are also sus-
ceptible to side-channel attacks like ciphers.

Given this vulnerability, the objective of this paper is to
examine it and propose the first countermeasure attempt for

neural network inference against power-based side-channel
attacks. A neural network inference is a sequence of repeated
linear and non-linear operations, similar in essence to crypto-
graphic algorithms, but has unique computations such as row-
reduction (i.e., weighted summation) operations and activation
functions. Unlike the attack scenario, the defense exhibits
challenges due to the presence of these operations in neural
networks, which introduce an additional and subtle type of
leak. To address the vulnerability, we propose a countermea-
sure using the concepts of message blinding and secret sharing.
This countermeasure style is called masking [8], which is
an algorithm-level defense that can produce resilient designs
independent of the implementation technology [9]. We tuned
this countermeasure for the neural networks in a cost effective
way and complement it with other techniques.

The main contributions of the paper include the following:
• We demonstrate attacks that can extract the secret weights

of a BNN in a highly-parallelized hardware implementa-
tion.

• We formulate and implement the first power-based side-
channel countermeasures for neural networks by adapting
masking to the case of neural networks. This process
reveals new challenges and solutions to mask unique
neural network computations that do not occur in the
cryptographic domain.

• We validate both the insecurity of the baseline design
and the security of the masked design using power
measurement of an actual FPGA hardware and quantify
the overheads of the proposed countermeasure.

We note that while there is prior work on theoretical at-
tacks [10], [11], [12], [13], [14] and digital side-channels [15],
[16], [17], [18] of neural networks, their physical side-channels
are largely unexplored. Such research is needed because phys-
ical side-channels are orthogonal to these threats, fundamental
to the Complementary Metal Oxide Semiconductor (CMOS)
technology, and require extensive countermeasures as we have
learned from the research on cryptographic implementations.
A white paper is recently published on model extraction
via physical side-channels [19]1. This work does not study
mitigation techniques and focuses on 8-bit/32-bit microcon-
trollers. We further analyze attacks on parallelized hardware
accelerators and investigate the first countermeasures.

II. THREAT MODEL AND RELATION TO PRIOR WORK

This work follows the typical DPA threat model [21]. The
adversary has physical access to the target device or has a re-
mote monitor [22], [23], [24] and obtains power measurements
while the device processes secret information. We assume
that the security of the system is not based on the secrecy
of the software or hardware design. This includes the details
of neural network algorithm and its hardware implementation
such as the data flow, parallelization and pipelining—in prac-
tice, those details are typically public but what remains a

1After we submitted our work to HOST’20, that paper has been published
at USENIX’19 [20].

Fig. 2. The adversary’s goal is to extract the secret model parameters on the
IoT/edge device during inference using side-channels.

secret is the model parameters obtained via training. For
unknown implementations, adversary can use prior techniques
to locate certain operations, which work in the context of
physical [25], [26] and digital side-channels [27], [28] cov-
ering both hardware and software realizations. This aspect of
reverse engineering logic functions from bitstream [29], [30]
is independent of our case and is generic to any given system.

Fig. 2 outlines the system we consider. The adversary in
our model targets the ML inference with the objective of
learning the secret model parameters. This is different than
attacks on training set [31] or the data privacy problem during
inference [32]. We assume the training phase is trusted but
the obtained model is then deployed to operate in an untrusted
environment. Our attack is similar to a known-plaintext (input)
attack and does not require knowing the inference output or
confidence score, making it more powerful than theoretical
ML extraction attacks [10], [11], [12], [13], [14].

Since edge/IoT devices are the primary target of DPA
attacks (due to easy physical access), we focus on BNNs
that are suitable on such constrained devices [6]. A BNN
also allows realizing the entire neural network on the FPGA
without having external memory access. Therefore, memory
access pattern side-channel attacks on the network [15] can-
not be mounted. We furthermore consider digitally-hardened
accelerator designs that execute in constant time and constant
flow with no shared resources, disabling timing-based or other
control-flow identification attacks [16], [17], [18]. This makes
the attacks we consider more potent than prior work.

III. BNN AND THE TARGET IMPLEMENTATION

The following subsections give a brief introduction to BNN
and discuss the details of the target hardware implementation.
A. Neural Network Classifiers

Neural networks consist of layers of neurons that take in
an input vector and ultimately make a decision, e.g., for a
classification problem. Neurons at each layer may have a dif-
ferent use, implementing linear or non-linear functions to make
decisions, applying filters to process the data, or selecting
specific patterns. Inspired from human nervous system, the

Fig. 3. A simple neural network and a single neuron’s function.

neurons in a neural network transmit information from one
layer to the other typically in a feed-forward manner.

Fig. 3 shows a simple network with two fully-connected
hidden layers and depicts the function of a neuron. In a feed-
forward neural network, each neuron takes the results from its
previous layer connections, computes a weighted summation
(row-reduction), adds a certain bias, and finally applies a non-
linear transformation to compute its activation output. The
resulting activation value is used by the next layer’s connected
neurons in sequence. The connections between neurons can be
strong, weak, or non-existent—the strength of these connec-
tions is called weight, which is a critical parameter for the
network. The entire neural network model can be represented
with these parameters, and with hyperparameters that are high-
level parameters such as the number or type of the layers.

Neural networks have two phases: training and inference.
During training, the network self-tunes its parameters for the
specific classification problem at hand. This is achieved by
feeding pre-classified inputs to the network together with their
classification results, and by allowing the network to converge
into acceptable parameters (based on some conditions) that can
compute correct output values. During inference, the network
uses those parameters to classify new (unlabeled) inputs.

B. BNNs

A BNN works with binary weights and activation values.
This is our starting point as the implementations of such
networks have similarities with the implementation of block
ciphers. BNN reduces the memory size and converts a floating
point multiplication to a single-bit XNOR operation in the
inference [33]. Therefore, such networks are suitable for
constrained IoT nodes where some of the detection accuracy
can be traded for efficiency. Several variants of this low-cost
approach exist to build neural networks with reasonably high
accuracy [33], [34], [6].

The following is the mathematical equation (1) for a typical
neuron:

a = f(
∑

wixi + b) (1)

where a is the activation value, wi is the weight, xi is the
activation of the previous layer and b is the bias value for the
node. wi, xi, and a have binary values of 0 and 1 respectively
representing the actual values of -1 and +1. The function f(x)
is the non-linear activation function (2), which in our case is
defined as follows:

Fig. 4. Overview of the unprotected neural network inference. The adder tree
first computes the weighted sum of input pixels. The activation function then
binarizes the sum used by the next layer. Finally, the output layer returns the
classification result by computing a maximum of last layer activations.

f(x) =

{
0, for x ≤ 0
1, for x > 1

}
(2)

Equations (1) and (2) show that the computation involves a
summation of weighted products with binary weights with a
bias offset and an eventual binarization.

We build the BNN inference hardware which performs
Modified National Institute of Standards and Technology
(MNIST) classification (hand written digit recognition from
28-by-28 pixel images) using 3 feed-forward, fully-connected
hidden layers of 1024 neurons. The implementation computes
up to 1024 additions (i.e., the entire activation value of a
neuron) in parallel.

C. Unprotected Hardware Design

Fig. 4 illustrates the sequence of operations in the neural
network. One fully-connected layer has two main steps: (1)
calculating the weighted sums using an adder tree and (2)
applying the non-linear activation function f . To classify
the image, the hardware sends out the node number with
maximum sum in the output layer.

The input image pixels are first buffered or negated based
on whether the weight is 1 or 0 respectively, and then fed
to the adder tree shown in Fig. 5. We implemented a fully-
pipelined adder tree of depth 10 as the hardware needs up
to 1024 parallel additions to compute the sum. The activation
function binarizes the final sum. After storing all the first layer
activations, the hardware computes the second layer activations
using the first layer layer activations. The output layer consists
of 10 nodes, each representing a classification class (0-9). The
node index with the maximum confidence score becomes the
output of the neural network.

The hardware reuses the same adder tree for each layer’s
computation, similar to a prior architecture [35]. Hence, the
hardware has a throughput of approximately 3000 cycles per
image classification. The reuse is not directly feasible as the
adder tree (Fig. 5) can only support 784 inputs (of 8-bits)
but it receives 1024 outputs from each of the hidden layers.
Therefore, the hardware converts the 1024 1-bit outputs from
each hidden layer to 512 2-bit outputs using LUTs. These
LUTs take the weights and activation values as input, and
produces the corresponding 512 2-bit sums, which is within

Fig. 5. Adder Tree used in HW Implementation. The figure shows the scenario
where the 2nd stage registers(red) are targeted for DPA. This results in 16
possible key guesses corresponding to the 4 input pixels involved in the
computation of each second stage register, grouped by the dotted blue line.

the limits of the adder tree. Adding bias and applying the batch
normalization is integrated to the adder tree computations.
We adopt the batch-normalization free approach [36], the bias
values are thus integer unlike the binary weights.

IV. AN EXAMPLE OF DPA ON BNN HARDWARE

This section describes the attack we performed on the BNN
hardware implementation that is able to extract secret weights.

To carry out a power based side-channel attack, the ad-
versary has to primarily focus on the switching activity of
the registers, as they have a significant power consumption
compared to combinational logic (especially in FPGAs). The
pipeline registers of the adder tree store the intermediate sum-
mations of the product of weights and input pixels. Therefore,
the value in these registers is directly correlated to the secret—
model weights in our case.

Fig. 5 shows an example attack. 4 possible values can be
loaded in the output register [0] of stage-1:−[0]−[1],−[0]+[1],
[0] − [1] and [0] + [1] corresponding to the weights of (0,0),
(0,1), (1,0) and (1,1), respectively. These values will directly
affect the computation and the corresponding result stored in
stage-2 registers. Therefore, a DPA attack with known inputs
(xi) on stage-2 registers (storing wixi accumulations) can
reveal 4-bits of the secret weights (wi). The attack can target
any stage of the adder tree but the number of possible weight
combinations grows exponentially with depth.

Since the adder tree is pipelined, we need to create a model
based on hamming distance of previous cycle and current cycle
summations in each register. To aid the attack, we developed
a cycle-accurate hamming-distance simulator for the adder
pipeline. It first computes the value in each register every cycle
for all possible weight combinations given a fixed input. Next,
it calculates the hamming distance of individual registers for
each cycle using the previous and current cycle values. Finally,
it adds the hamming distances of all the registers for a cycle
to model the overall power dissipation for that cycle.

Fig. 6 illustrates the result of the attack on stage-2 registers.
There is a strong correlation between the correct key guess
and the power measurements crossing the 99.99% confidence
threshold after 45k measurements. The false positive leak is
due to signed multiplication and is caused by the additive

Fig. 6. Pearson Correlation Coefficient versus time and number of traces for
DPA on weights. Lower plot shows a high correlation peak at the time of
target computation, for the correct weight guess denoted in green. The upper
plot shows that approximately 40k traces are needed to get a correlation of
99.99% for the correct guess. The confidence intervals are shown in dotted
lines. The blue plot denotes the 2’s complement of the correct weight guess

inverse of the correct key, which is expected and thus does
not affect the attack. Using this approach, the attacker can
successively extract the value of weights and biases for all the
nodes in all the layers, starting from the first node and layer.
The bias, in our design, is added after computing the final sum
in the 10th stage, before sending the result to the activation
function. Therefore the adversary can attack this addition
operation by creating a hypothesis for the bias. Another way
extract bias is by attacking the activation function output since
the sign of the output correlates to the bias.

V. SIDE-CHANNEL COUNTERMEASURES

This section presents our novel countermeasure against
side-channel attacks. The development of the countermeasure
highlights unique challenges that arise for masking neural
networks and describes the implementation of the entire neural
network inference.

Masking works by making all intermediate computations
independent of the secret key—i.e., rather than preventing
the leak, by encumbering adversary’s capability to correlate
it with the secret value. The advantage of masking is being
implementation agnostic. Thus, they can be applied on any
given circuit style (FPGA or ASIC) without manipulating
back-end tools but they require algorithmic tuning, especially
to mask unique non-linear computations.

The main idea of masking is to split inputs of all key-
dependent computations into two randomized shares: a one-
time random mask and a one-time randomized masked value.
These shares are then independently processed and are re-
constituted at the final step when the final output is gener-
ated. This would effectively thwart first-order side-channel

attacks probing a single intermediate computation. Higher-
order attacks probing multiple computations [37]—masks and
masked computations—can be further mitigated by splitting
inputs of key-dependent operations into more shares [38]. Our
implementation is designed to be first-order secure but can
likewise be extended for higher order attacks.

Fig. 4 highlights that a typical neural network inference can
be split into 3 distinct types of operations: (1) the adder tree
computations, (2) the activation function and the (3) output
layer max function. Our goal is to mask these functions to
increase resilience against power side-channel attacks. These
specific functions are unique to a neural network inference.
Hence, we aim to construct novel masked architectures for
them using the lessons learned from cryptographic side-
channel research. We will explain our approach in a bottom-up
fashion by describing masking of individual components first,
and the entire hardware architecture next.

A. Masking the Adder Tree

Using the approach in Fig. 5, the adversary can attack any
stage of the adder tree to extract the secret weights. Therefore,
the countermeasure has to break the correlation between the
summations generated at each stage and the secret weights.
We use the technique of message blinding to mask the input
of the adder tree.

Blinding is a technique where the inputs are randomized
before sending to the target unit for computation. This prevents
the adversary from knowing the actual inputs being processed,
which is usually the basis for known-plaintext power-based
side channel attacks. Fig. 7 shows our approach, that uses this
concept by splitting each of the 784 input pixels ai into two
arithmetic shares ri and ai−ri, where each ri is a unique 8-bit
random number. These two shares are therefore independent
of the input pixel value, as ri is a fresh random number never
reused again for the same node. The adder tree can operate
on each share individually due to additive homomorphism—it
generates the two final summations for each branch such that
their combination (i.e., addition) will give the original sum.
Since the adder tree is reused for all layers, hardware simply
repeats the masking process for subsequent hidden layers using
fresh randomness in each layer.

1) A Unique and Fundamental Challenge for Arithmetic
Masking of Neural Networks: The arithmetic masking ex-
tension to the adder tree is unfortunately non-trivial due
to differences in the fundamental assumptions. Arithmetic
masking aims at decorrelating a variable x by splitting it
into two statistically independent shares: r and (x − r) mod
k. The modulo operation in (x − r) mod k exists in most
cryptographic implementations because most of them are
based on finite fields. In a neural network, however, subtraction
means computing the actual difference without any modulus.
This introduces the notion of sign in numbers, which is absent
in modulo arithmetic, and is the source of the problem.

Consider two uniformly distributed 8-bit unsigned num-
bers a and r. In a modulo subtraction, the result will be
(a − r) mod 256, which is again an 8-bit unsigned number

Fig. 7. Masking of adder tree. Each input pixel depicted in orange is split
into two arithmetic shares depicted by the green and blue nodes with unique
random numbers (ris). The masked adder tree computes branches sequentially.

lying between 0 and 255. In an actual subtraction, however,
the result will be (a− r), which is a 9-bit number with MSB
being the sign bit.

TABLE I
PROBABILITY OF a− r BEING POSITIVE OR NEGATIVE

Scenario Positive Negative
a > 128& r > 128 50% 50%
a > 128& r < 128 100% 0%
a < 128& r > 128 0% 100%
a < 128& r < 128 50% 50%

Table I lists four possible scenarios of arithmetic masking
based on the magnitude of the two unsigned 8-bit shares.
In a perfect masking scheme, probability of a − r being
either positive or negative should be 50%, irrespective of
the magnitude of the input a. Let’s consider the case when
a > 128, which has a probability of 50%. If r < 128, which
also has a 50% probability, the resulting sum a− r is always
positive. Else if r > 128, the value a−r can both be positive or
negative with equal probabilities due to uniform distribution.
Therefore, given a > 128, the probability of the arithmetic
mask being positive is (50+25)% = 75% and being negative is
25%. Table I lists the other case when a < 128, which results
a similar correlation between a and a− r. This is showing a
clear information leak through the sign bit of arithmetic masks.

The discussed vulnerability does not happen in modulo
arithmetic as there is no sign bit; the modulo operation wraps
around the result if it is out of bounds, to obey the closure
property. Evaluating the correlation of (a+r) instead of (a−r)
yields similar results. Likewise, shifting the range of r based
on a, to uniformly distribute (a − r) between -128 to 127,
would not resolve the problem and further introduces a bias
in both shares.

2) Addressing the Vulnerability with Hiding: The arithmetic
masking scheme can be augmented to decorrelate the sign
bit from the input. We used hiding to address this problem.
We used hiding just for the sign bit computation. Hiding
techniques target constant power consumption, irrespective
of the inputs, which makes it harder for an attacker to
correlate the intermediate variables. Power equalized build-
ing blocks using techniques like Wave Differential Dynamic

Logic (WDDL) [39] can achieve close to a constant power
consumption to mitigate the vulnerability.

The differential part of WDDL circuits aims to make the
power consumption constant throughout the operation, by
generating the complementary outputs of each gate along with
the original outputs. Differential logic makes it difficult for an
attacker to distinguish between a 0→ 1 and a 1→ 0 transition,
however, an attacker can still distinguish between a 0 → 0
and a 0 → 1 transition or a 1 → 1 and a 1 → 0 transition.
Therefore, the differential logic alone is still susceptible to side
channel leakages, as the power activity is easily correlated to
the input switching pattern. This vulnerability is reduced by
dynamic logic, where all the gates are pre-charged to 0, before
the actual computation.

We use the WDDL gates to solve our problem of sign bit
leakages, by modifying the adders to compute the sign bit in
WDDL style. Following is the equation of the addition, when
two 8-bit signed numbers a and b, represented as (a7a6 · · ·
a0) and (b7b6 · · · b0) are added to give a 9-bit signed sum s
represented by (s8s7 · · · s0):

s = a + b (3)
After sign-extending a and b,
{s8s7s6 · · · s0} = {a7a7a6 · · · a0}+ {b7b7b6 · · · b0} (4)

Performing regular addition on the leftmost 8 bits of a and b,
and generating a carry c, the equation of s8 becomes

s8 = a7 ⊕ b7 ⊕ c (5)
Expanding the above expression in terms of AND, OR and
NOT operators results:

s8 = (a7 · b7 · c)|(a7 · b7 · c)|(a7 · b7 · c)|(a7 · b7 · c) (6)
Representing the expression only in terms of NAND, so that
we can replace all the NANDs by WDDL NAND gates reveals:

s8 = (a7 · b7 · c) · (a7 · b7 · c · (a7 · b7 · c) · (a7 · b7 · c) (7)

Fig. 8 depicts the circuit diagram for the above imple-
mentation. The WDDL technique is applied to the MSB
computation by replacing each NAND function in Eq (7) with
WDDL NAND gates. The pipeline registers of the adder tree
are replaced by Simple Dynamic Differential Logic (SDDL)
registers [39]. Each WDDL adder outputs the actual sum s
and the complement of its MSB s′8, which go as input to the
WDDL adder in the next stage of the pipelined tree. Therefore,
we construct a resilient adder tree mitigating the leakage in
the sign-bit.

B. Masking the Activation Function

The binary sign function (Eq. 2) is the activation function
of BNN. This function generates +1 if the weighted sum
is positive, else -1 if the sum is negative. In the unmasked
implementation, the sign function receives the weighted sum
of the 784 original input pixels, whereas in the masked imple-
mentation, it receives the two weighted sums corresponding to
each masked share. So, the masked function has to compute
the sign of the sum of two shares without actually adding
them. Using the fact that the sign only depends on the MSB

Fig. 8. Circuit diagram of the proposed adder with MSB computed in WDDL
style as described in Eq.(3)-(7). Each of the 784 arithmetic shares (a, b, ...) are
fed to these adders. All the bits except the MSB undergo a regular addition.
The MSBs of the two operands along with the generated carry are fed to the
Differential MSB Logic block, which computes the MSB and its complement
by replacing the NAND gates in Eq (7) by WDDL gates. The pipeline registers
in the tree are replaced by SDDL registers. The NOR gates generate the pre-
charge wave at the start of the logic cones. The regular and the WDDL specific
blocks are depicted in blue and green respectively

of the final sum, we propose a novel masked sign function
that sequentially computes and propagates the masked carry
bits in a ripple carry fashion.

Fig. 9 shows the details of our proposed masked sign
function hardware. This circuit generates the first masked carry
using a Look-up-Table (LUT) that takes in the LSB of both
shares and a fresh random bit (ri) to ensure the randomization
of the intermediate state, similar in style to prior works on
masked LUT designs [40]. LUT function computes the masked
function with the random input and generates two outputs: one
is the bypass of the random value (ri) and the other is the
masked output (ri ⊕ f(x)) where f(x) is the carry output.
The entire LUT function for each output can fit into a single
LUT to reduce the effects of glitches [9]. To further reduce
the impact of glitches, the hardware stores each LUT output
in a flip-flop. These are validated empirically in Section VI.

The outputs of an LUT are sent to the next LUT in chain
and the next masked carry is computed accordingly. From
the second LUT and onward, each LUT has to also take
the masked carry and mask value generated from the prior
step. The output ro is simply the input ri like a forward
bypass, because the mask value is also needed for the next
computation. This way the circuit processes all the bits of the
shares and finally outputs the last carry bit which decides the
sign of the sum. Each LUT computation is masked by a fresh
random number. More efficient designs may also be possible
using a masked Kogge-Stone adder (e.g., by modifying the
ones described in [41]).

Fig. 9 illustrates that the first LUT is a 3-bit input 2-bit
output LUT because there is no carry-in for LSB, and all the
subsequent LUTs have 5-bit inputs and 2-bit outputs since they
also need previous stage outputs as their inputs. After the final
carry is generated, which is also the sign bit of the sum, the
hardware can binarize the sum to 1 or 0 based on whether
the sign bit is 0 or 1 respectively. This is the functionality of
the final LUT, which is different from the usual masked carry
generators in the earlier stages.

Fig. 9. Hardware design of the masked binarizer. It comprises of a chain
of LUTs (lut0-lut18) denoted in blue, computing the carry in ripple carry
fashion. Each LUT is masked by a fresh random number (ri). The whole
design is fully pipelined to maintain the original throughput by adding flip
flops (in green) at each stage.

The circuit has 19 LUTs in serial; each LUT output
is registered for timing and side-channel resilience against
glitches. This design, however, adds a latency of 19 cycles to
compute each activation value, increasing the original latency.
Therefore, instead of streaming each of the 19 bits on the top
row of LUTs sequentially in Fig. 9, the entire 19 bit sum is
registered in the first stage, and each bit is used sequentially
throughout the 19 cycles. This avoids the 19 cycle wait time
for consecutive sums and brings back the throughput to 1
activation per cycle.

C. Boolean to Arithmetic Share Conversion

Each layer generates 1024 pairs of Boolean shares, which
requires two changes in the hardware. First, the adder tree
supports 784 inputs which cannot directly process 1024 shares.
Second, the activation values are in the form of two Boolean
shares while the masking of adder tree requires arithmetic
shares as discussed in Section V-A. Using the same strategy
of the unmasked design, the hardware adds 1024 1-bit shares
pairwise to produce 512 2-bit shares before sending them
to the adder tree. To resolve the conversion of Boolean to
arithmetic conversion, the hardware can generate R such that

x = x1 ⊕ x2 (8)

x = R + x2 (9)

Using masked LUTs, the hardware performs signed addition
of 1024 shares to 512 shares, and it also produces the
arithmetic shares. The LUTs take in two consecutive activation
values already multiplied by the corresponding weights, and a
2-bit signed random number to generate the arithmetic shares.
Since multiplication in binary neural network translates to
an XNOR operation [33], the hardware performs an XNOR
operation using the activation value with its corresponding
weight before sending it to the LUT. Since the activation value
is in the form of 2 Boolean shares, the hardware performs
XNOR only on one of the shares as formulated below:

a⊕w = b (10)

a = a1 ⊕ a2 (11)

(a1 ⊕ a2)⊕w = (a1⊕w) ⊕ a2 (12)

The LUTs have five inputs: two shares that are not
XNORed, two shares that are XNORed and a 2-bit signed
random number. If the actual sum of the two consecutive nodes
is ai, then the LUT outputs ri and ai-ri range from -2 to +1
since it is a 2-bit signed number and weighted sum of two
nodes will range from -2 to +2. Therefore, ai-ri can range
from -3 to +4 and should be 4-bit wide. The hardware has
512 LUTs that convert the 1024 pairs of Boolean shares to 512
pairs of arithmetic shares. After the conversion, the hardware
reuses the same adder tree masking that was described in
Section V-A. The arithmetic shares have a leakage in MSB as
discussed in Subsection V-A1, but because the same WDDL
style adder tree is reused, this is addressed for all layers.

D. Output Layer

In the output layer, for an unmasked design, the index of
the node with maximum confidence score is generated as the
output of the neural network. In the masked case, however, the
confidence values are split in two arithmetic shares, which by
definition cannot be combined. Equations (14–16) formulate
the masking operations of the output layer. Basically, we check
if the sum of two numbers is greater than the sum of another
two numbers, without looking at the terms of each sum at
the same time. Therefore, instead of adding the two shares of
the confidence values and comparing them, we subtract one
share of a confidence value from another share of the other
confidence value. This still solves the inequality, but looks at
the shares of two different confidence scores.

a1 + a2 ≥ b1 + b2 (13)

a1 − b2 ≥ b1 − a2 (14)
(a1 − b2) + (a2 − b1) ≥ 0 (15)

This simplifies the original problem to the previous problem
of finding the sign of the sum of two numbers without
combining them. Hence, in the final layer computation, the
hardware reuses the masked carry generator explained in
Section V-B.

E. The Entire Inference Engine

Fig. 10 illustrates all the components of the masked neural
network. First, the network arithmetically masks the input
pixel ai using fresh ri generated by the PRNG. Next, the
WDDL style adder tree processes each of the masks (ri)
and the masked values (ai − ri) in two sequential phases.
The demultiplexer at the adder tree output helps to buffer
the first phase final summations, and pass the second phase
summations to the masked activation function directly. The
masked activation function produces the two Boolean shares
of the actual activation using fresh randomness from the
PRNG. The network XNORs one share with the weights and
sends the second share directly to the Boolean to arithmetic
converters. The converters produce 512 arithmetic shares from
the 1024 Boolean shares using random numbers generated by
the PRNG. The hardware feeds the arithmetic shares ai − ri

Fig. 10. Components of the masked BNN. Blocks in green represent the proposed masking blocks.

and ri to the adder tree and repeats the whole process for each
layer. Finally, the output layer reuses the masked activation
function to find the node with maximum confidence from the
arithmetic shares of the confidence values and computes the
classification result output as described in Subsection V-D.

VI. LEAKAGE AND OVERHEAD EVALUATION

This section describes the measurement setup for our ex-
periments, the evaluation methodology used to validate the
security of the unprotected and protected implementations, and
the corresponding results with overhead quantification.

A. Hardware Setup

Our evaluation setup used the SAKURA-X board [42],
which includes a Xilinx Kintex-7 (XC7K160T-1FBGC) FPGA
for processing and enables measuring the voltage drop on
a 10mΩ shunt-resistance while making use of the on-board
amplifiers to measure FPGA power consumption. The clock
frequency of the design was 24MHz. We used the Picoscope
3206D oscilloscope to take measurements with the sampling
frequency set to 250MHz. To amplify the output of the Kintex-
7 FPGA, we used a low-noise amplifier provided by Riscure
(HD24248) along with the current probe setup. The experiment
can also be conducted at a lower sampling rate by increasing
the number of measurements [43].

B. Side-Channel Test Methodology

Our leakage evaluation methodology is built on the prior
test efforts on cryptographic implementations [44], [25], [40].
We performed DPA on the 4 main operations of an inference
engine as stated before, viz. adder tree, activation function,
Boolean to arithmetic share conversion, and output layer
max function. Pseudo Random Number Generators (PRNG)
produced the random numbers required for masking—any
cryptographically-secure PRNG can be employed to this end.
We first show the first-order DPA weight recovery attacks on
the masked implementation with PRNG disabled. With PRNG
off, the design’s security is equivalent to that of an unmasked
design. We illustrate that such a design leaked information for
all the three operations, which ensured that our measurement
setup and recovery code was sound. Next, we turned on the
PRNG and performed the same attack which failed for all
the operations. We also performed a second-order attack to
validate the number of traces used in the first-order analysis.
The power model was based on hamming distance of registers
that was generated using our HD simulator for the neural

network and the tests used the Pearson correlation coefficient
to compare the measurement data with the hypothesis. In
practice, we leave it as an open problem to use more advanced
tools like profiled attacks (model-less), MCP-DPA attacks [45]
for the masking parts, information theoretic tools (MI/PI/HI)
[46], and more advanced high-dimensional attacks/filtering or
post-processing.

C. Attacks with PRNG off

The PRNG generates the arithmetic shares for the adder
tree, feeds the masked LUTs of the activation function and
the Boolean to arithmetic converters. Turning off the PRNG
unmasks all these operations making a first-order attack suc-
cessful at all these points. Fig. 11 shows the mean power plot
on the top for orientation, which is followed below by the 3
attack plots with PRNG disabled. We attack the second stage
of the adder tree, the first node’s activation result, and the first
node of the output layer, respectively, shown in the next three
plots. In all the plots, we observe a distinct correlation peak
for the targeted variable corresponding to the correct weight
and bias values. Fig. 12 shows the evolution of the correlation
coefficient as the number of traces increase. The attack is
successful at 200 traces with PRNG off. This validates our
claim on the vulnerability of the baseline, unprotected design.

D. First-order Attacks with PRNG on

We used the same attack vectors from the case of PRNG
off, but with the PRNG turned on this time. This armed all
the countermeasures implemented for each operation. Fig. 11
shows that the distinct peaks seen in the PRNG OFF plots
do not appear in the PRNG ON plots for first-order attacks.
Fig. 12 shows that the first-order attack is unsuccessful with
100k traces. This validates our claim on the resiliency of the
masked, protected design.

E. Second Order Attacks with PRNG on

We also performed a second-order DPA on the activation
function to demonstrate that we used sufficient number of
traces in the first-order attack. Again, we used the same attack
vectors used in the first-order analysis experiments, but applied
the attack on centered-squared traces. Fig. 11 shows that we
observed a distinct correlation peak at the correct point in
time. Fig. 12 shows the evolution of the correlation coefficient
for the second-order attack. We can see that the attack is
successful around 3.7k traces which confirms that 100k traces
are sufficient for a first-order attack.

Fig. 11. Side-channel evaluation tests. First-order attacks on the unmasked design (PRNG off) show that it leaks information while the masked design (PRNG
on) is secure. The second-order attack on the masked design succeeds and validates the number of measurements used in the first-order attacks.

Fig. 12. Evolution of the Pearson coefficient at the point of leak with the number of traces for first-order attacks when the PRNGs are off (left), PRNGs are
on (middle), and for second order attacks with PRNGs on (right). The first-order attack with PRNGs off succeeds around 200 traces but fails when PRNGs
are on even with 100k traces, which shows that the design is masked successfully. The second-order attack becomes successful around 3.7k traces, which
validates that we used sufficient number of traces in the first-order attacks.

F. Attacks on Hiding

We applied a difference of means test with 100k traces to
test the vulnerability of hiding used for the MSB of arithmetic
shares. The partition is thus based on the binary value of
MSB. Fig. 13 shows the attack on the targeted clock cycle
and quantifies that after 40k traces the adversary is able
to distinguish the two cases with 99.99% confidence. Note
that this number is significantly higher than the number of
measurements required to succeed for the second order attack.
The number of traces for all the attacks are relatively low due
to the very friendly scenario created for the adversary; the
platform is low noise. In a real-life setting, the noise would
be much higher and consequently all attacks would require
more traces.

G. Masking Overheads

Table II summarizes the area and latency overheads of
masking in our case. As expected, due to the sequential pro-

cessing with the two shares in the masked implementation, the
inference latency is approximately doubled, from 3192 cycles
for the baseline to 7248 cycles. Table II also compares the area
utilization of the unmasked vs. masked implementations in
terms of the various blocks present in the FPGA. The increase
in the number of the LUTs, flip flops and BRAMs in the design
is approximately 2.7x, 1.7x and 1.3x. The significant increase
in the number of LUTs is mainly due to the masked LUTs used
to mask the activation function and convert the Boolean shares
of each layer to arithmetic shares. The increase in the number
of flip flops and BRAM utilization is caused by additional
storage structures of the masked implementation such as the
randomness buffered at the start to mask the various parts
of the inference engine. Furthermore, the arithmetic masks
are also stored in the first phase, to be sent together to the
masked activation function later. Each layer also stores twice
the number of activations in the form of two Boolean shares
increasing the memory overhead.

Fig. 13. The difference-of-means test on the WDDL based signed-bit
computation. The figure shows that the difference of means between the
power traces corresponding to MSB=0 and MSB=1 cases cross the 99.99%
confidence interval (represented by the dotted lines) around 40k traces.

TABLE II
AREA AND LATENCY COMPARISON OF UNMASKED VS. MASKED

IMPLEMENTATIONS
Design Type LUT/FF BRAM/DSP Cycles
Unmasked 20296/18733 81/0 3192

Masked 55508/33290 111/0 7248

VII. DISCUSSIONS

This section discusses the orthogonal aspects together with
the limitations of our approach and comments on how they
can be complemented to improve our proposed effort.

A. Limitations of The Proposed Defense

Masking is difficult—after 20 years of AES masking, there
is still an increasing number of publications (e.g. CHES’19
papers [47], [48], [49]) on better/more efficient masking. This,
in part, is due to ever-evolving attacks [50]. The paper’s focus
is on empirical evaluation of security. We provide a proof-
of-concept which can be extended towards building more
robust and efficient solutions. We emphasize the importance of
theoretical proofs [51] and the need to conduct further research
on adapting them to the machine learning framework.

We have addressed the leakage in the sign bit of arithmetic
share generation of the adder tree through hiding for cost-
effectiveness. This is the only part in our hardware design
that is not masked and hence may be vulnerable due to
composability issues or implementation imbalances (especially
for sophisticated EM attacks [52]). We highlight this issue as
an open problem, which may be addressed through extensions
of gate level masking. But such an implementation will incur
significant overheads in addition to what we already show.

Our evaluations build on top of model-based approaches,
which can be corroborated with more sophisticated attacks
such as template based [53], moments-correlating based [45],
deep-learning based [54], or horizontal methods [55]. More
research is needed to design efficient masking components
for neural network specific computations, extending first-order
masks to higher-order, and on investigating the security against
such side-channel attacks.

B. Comparison of Theoretical Attacks, Digital Side-Channels,
and Physical Side-Channels

We argue that a direct comparison of the physical side-
channels to digital and theoretical attack’s effectiveness (in

terms of number of queries) is currently unfair due to im-
maturity of the model extraction field and due to different
target algorithms. Analyzing and countering theoretical attacks
improve drastically over time. This has already occurred in
cryptography: algorithms have won [56]. Indeed, there has
been no major breakthrough on the cryptanalysis of encryption
standards widely-used today. But side-channel attacks are still
commonplace and are even of growing importance. While
digital side-channels are imminent, they are relatively easier to
address in application-specific hardware accelerators/IPs that
enforce constant time and constant flow behavior (as opposed
to general purpose architectures that execute software). For
example, the hardware designs we provide in this work has no
digital side-channel leaks. Physical side-channels, by contrast,
are still observed in such hardware due to their data-dependent,
low-level nature; and therefore require more involved mitiga-
tion techniques.

C. Scaling to other Neural Networks

The primary objective of this paper is to provide the
first proof-of-concept of both power side-channel attacks and
defenses of NNs in hardware. To this end, we have designed
a neural network that encompasses all the basic features of a
binarized neural network, like binarized weights and activa-
tions, and the commonly used sign function for non-linearity.
When extended to other neural networks/datasets, like CIFAR-
10, the proposed defences will roughly scale linearly with
the node, layer count and bit-precision (size) of neurons. To
deploy the countermeasures on constrained devices, the area
overheads can be traded off for throughput, or vice versa. Any
algorithm, independent of its complexity, can be attacked with
physical side-channels. But the attack success will depend on
the parallelization level in hardware. In a sequential design,
increasing the weight size (e.g. moving from one bit to 8-bits
or floating point) may even improve the attack because there
is more signal to correlate.

VIII. CONCLUSION

Physical side-channel leaks in neural networks call for a
new line of side-channel analysis research because it opens
up a new avenue of designing countermeasures tailored for
the deep learning inference engines. In this paper, we provided
the first effort in mitigating the side-channel leaks in neural
networks. We primarily apply masking style techniques and
demonstrate new challenges together with opportunities that
originate due to the unique topological and arithmetic needs
of neural networks. Given the variety in neural networks with
no existing standard and the apparent, enduring struggle for
masking, there is a critical need to heavily invest in securing
deep learning frameworks.

IX. ACKNOWLEDGEMENTS

We thank the anonymous reviewers of HOST for their
valuable feedback and to Itamar Levi for helpful discussions.
This project is supported in part by NSF under Grants No.
1850373 and SRC GRC Task 2908.001.

REFERENCES

[1] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in Advances
in cryptology–CRYPTO’99. Springer, 1999, pp. 789–789.

[2] N. Dalvi, P. Domingos, Mausam, S. Sanghai, and D. Verma,
“Adversarial classification,” in Proceedings of the Tenth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
ser. KDD ’04. New York, NY, USA: ACM, 2004, pp. 99–108.
[Online]. Available: http://doi.acm.org/10.1145/1014052.1014066

[3] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami, “The limitations of deep learning in adversarial settings,”
in 2016 IEEE European Symposium on Security and Privacy (EuroS P),
March 2016, pp. 372–387.

[4] G. Wang, T. Wang, H. Zheng, and B. Y. Zhao, “Man vs.
machine: Practical adversarial detection of malicious crowdsourcing
workers,” in 23rd USENIX Security Symposium (USENIX
Security 14). San Diego, CA: USENIX Association, 2014,
pp. 239–254. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity14/technical-sessions/presentation/wang

[5] I. Kanter, W. Kinzel, and E. Kanter, “Secure exchange of information
by synchronization of neural networks,” Europhysics Letters (EPL),
vol. 57, no. 1, pp. 141–147, jan 2002. [Online]. Available:
https://doi.org/10.1209%2Fepl%2Fi2002-00552-9

[6] M. Courbariaux and Y. Bengio, “BinaryNet: training deep neural
networks with weights and activations constrained to +1 or -
1,” CoRR, vol. abs/1602.02830, 2016. [Online]. Available: http:
//arxiv.org/abs/1602.02830

[7] E. Brier, C. Clavier, and F. Olivier, “Correlation power analysis with a
leakage model,” in International Workshop on Cryptographic Hardware
and Embedded Systems. Springer, 2004, pp. 16–29.

[8] J.-S. Coron and L. Goubin, “On boolean and arithmetic masking against
differential power analysis,” in Cryptographic Hardware and Embedded
Systems — CHES 2000, Ç. K. Koç and C. Paar, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2000, pp. 231–237.

[9] S. Nikova, C. Rechberger, and V. Rijmen, “Threshold implementations
against side-channel attacks and glitches,” in Information and Communi-
cations Security, P. Ning, S. Qing, and N. Li, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2006, pp. 529–545.

[10] D. Lowd and C. Meek, “Adversarial learning,” in Proceedings of
the Eleventh ACM SIGKDD International Conference on Knowledge
Discovery in Data Mining, ser. KDD ’05. New York, NY, USA:
ACM, 2005, pp. 641–647. [Online]. Available: http://doi.acm.org/10.
1145/1081870.1081950

[11] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Stealing
machine learning models via prediction APIs,” in Proceedings of
the 25th USENIX Conference on Security Symposium, ser. SEC’16.
Berkeley, CA, USA: USENIX Association, 2016, pp. 601–618.
[Online]. Available: http://dl.acm.org/citation.cfm?id=3241094.3241142

[12] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and
A. Swami, “Practical black-box attacks against machine learning,”
in Proceedings of the 2017 ACM on Asia Conference on Computer
and Communications Security, ser. ASIA CCS ’17. New York,
NY, USA: ACM, 2017, pp. 506–519. [Online]. Available: http:
//doi.acm.org/10.1145/3052973.3053009

[13] B. Wang and N. Z. Gong, “Stealing hyperparameters in machine
learning,” in 2018 IEEE Symposium on Security and Privacy (SP), May
2018, pp. 36–52.

[14] M. Juuti, S. Szyller, A. Dmitrenko, S. Marchal, and N. Asokan,
“PRADA: protecting against DNN model stealing attacks,” CoRR, vol.
abs/1805.02628, 2018. [Online]. Available: http://arxiv.org/abs/1805.
02628

[15] W. Hua, Z. Zhang, and G. E. Suh, “Reverse engineering convolutional
neural networks through side-channel information leaks,” in 2018 55th
ACM/ESDA/IEEE Design Automation Conference (DAC), June 2018, pp.
1–6.

[16] S. Tople, K. Grover, S. Shinde, R. Bhagwan, and R. Ramjee, “Privado:
Practical and secure DNN inference,” CoRR, vol. abs/1810.00602,
2018. [Online]. Available: http://arxiv.org/abs/1810.00602

[17] M. Yan, C. W. Fletcher, and J. Torrellas, “Cache telepathy: Leveraging
shared resource attacks to learn DNN architectures,” CoRR, vol.
abs/1808.04761, 2018. [Online]. Available: http://arxiv.org/abs/1808.
04761

[18] H. Naghibijouybari, A. Neupane, Z. Qian, and N. Abu-Ghazaleh,
“Rendered insecure: GPU side channel attacks are practical,” in

Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’18. New York, NY,
USA: ACM, 2018, pp. 2139–2153. [Online]. Available: http:
//doi.acm.org/10.1145/3243734.3243831

[19] L. Batina, S. Bhasin, D. Jap, and S. Picek, “CSI neural network: Using
side-channels to recover your artificial neural network information,”
CoRR, vol. abs/1810.09076, 2018. [Online]. Available: http://arxiv.org/
abs/1810.09076

[20] ——, “CSI NN: Reverse engineering of neural network architectures
through electromagnetic side channel,” in 28th USENIX Security
Symposium (USENIX Security 19). Santa Clara, CA: USENIX
Association, Aug. 2019, pp. 515–532. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity19/presentation/batina

[21] P. Kocher, J. Jaffe, B. Jun, and P. Rohatgi, “Introduction to
differential power analysis,” Journal of Cryptographic Engineering,
vol. 1, no. 1, pp. 5–27, Apr 2011. [Online]. Available: https:
//doi.org/10.1007/s13389-011-0006-y

[22] F. Schellenberg, D. R. E. Gnad, A. Moradi, and M. B. Tahoori, “An
inside job: Remote power analysis attacks on FPGAs,” in 2018 Design,
Automation Test in Europe Conference Exhibition (DATE), March 2018,
pp. 1111–1116.

[23] M. Zhao and G. E. Suh, “FPGA-based remote power side-channel
attacks,” in 2018 IEEE Symposium on Security and Privacy, SP 2018,
IEEE Computer Society, 2018, pp. 839–854.

[24] C. Ramesh, S. B. Patil, S. N. Dhanuskodi, G. Provelengios,
S. Pillement, D. Holcomb, and R. Tessier, “FPGA side channel
attacks without physical access,” in International Symposium on
Field-Programmable Custom Computing Machines, Boulder, United
States, Apr. 2018, p. paper#116. [Online]. Available: https://hal.
archives-ouvertes.fr/hal-01787439

[25] J. Balasch, B. Gierlichs, O. Reparaz, and I. Verbauwhede, DPA, Bit-
slicing and Masking at 1 GHz. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2015, pp. 599–619.

[26] T. Eisenbarth, C. Paar, and B. Weghenkel, Building a Side
Channel Based Disassembler. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2010, pp. 78–99. [Online]. Available: https://doi.org/10.
1007/978-3-642-17499-5 4

[27] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Cross-VM side
channels and their use to extract private keys,” in Proceedings of the
2012 ACM Conference on Computer and Communications Security, ser.
CCS ’12. New York, NY, USA: ACM, 2012, pp. 305–316.

[28] M. S. İnci, B. Gulmezoglu, G. Irazoqui, T. Eisenbarth, and B. Sunar,
Cache Attacks Enable Bulk Key Recovery on the Cloud. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2016, pp. 368–388.

[29] J.-B. Note and E. Rannaud, “From the bitstream to the netlist,”
in Proceedings of the 16th International ACM/SIGDA Symposium
on Field Programmable Gate Arrays, ser. FPGA ’08. New
York, NY, USA: ACM, 2008, pp. 264–264. [Online]. Available:
http://doi.acm.org/10.1145/1344671.1344729

[30] F. Benz, A. Seffrin, and S. A. Huss, “Bil: A tool-chain for bitstream
reverse-engineering,” in 22nd International Conference on Field Pro-
grammable Logic and Applications (FPL), Aug 2012, pp. 735–738.

[31] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership
inference attacks against machine learning models,” in 2017 IEEE
Symposium on Security and Privacy (SP), May 2017, pp. 3–18.

[32] L. Wei, B. Luo, Y. Li, Y. Liu, and Q. Xu, “I know what you see: Power
side-channel attack on convolutional neural network accelerators,”
in Proceedings of the 34th Annual Computer Security Applications
Conference, ser. ACSAC ’18. New York, NY, USA: ACM, 2018,
pp. 393–406. [Online]. Available: http://doi.acm.org/10.1145/3274694.
3274696

[33] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-Net:
ImageNet classification using binary convolutional neural networks,”
in Computer Vision – ECCV 2016, B. Leibe, J. Matas, N. Sebe, and
M. Welling, Eds. Cham: Springer International Publishing, 2016, pp.
525–542.

[34] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong,
M. Jahre, and K. Vissers, “FINN: A framework for fast, scalable
binarized neural network inference,” in Proceedings of the 2017
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, ser. FPGA ’17. New York, NY, USA: ACM, 2017, pp. 65–74.
[Online]. Available: http://doi.acm.org/10.1145/3020078.3021744

[35] E. Nurvitadhi, D. Sheffield, Jaewoong Sim, A. Mishra, G. Venkatesh,
and D. Marr, “Accelerating binarized neural networks: Comparison of

http://doi.acm.org/10.1145/1014052.1014066
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/wang
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/wang
https://doi.org/10.1209%2Fepl%2Fi2002-00552-9
http://arxiv.org/abs/1602.02830
http://arxiv.org/abs/1602.02830
http://doi.acm.org/10.1145/1081870.1081950
http://doi.acm.org/10.1145/1081870.1081950
http://dl.acm.org/citation.cfm?id=3241094.3241142
http://doi.acm.org/10.1145/3052973.3053009
http://doi.acm.org/10.1145/3052973.3053009
http://arxiv.org/abs/1805.02628
http://arxiv.org/abs/1805.02628
http://arxiv.org/abs/1810.00602
http://arxiv.org/abs/1808.04761
http://arxiv.org/abs/1808.04761
http://doi.acm.org/10.1145/3243734.3243831
http://doi.acm.org/10.1145/3243734.3243831
http://arxiv.org/abs/1810.09076
http://arxiv.org/abs/1810.09076
https://www.usenix.org/conference/usenixsecurity19/presentation/batina
https://www.usenix.org/conference/usenixsecurity19/presentation/batina
https://doi.org/10.1007/s13389-011-0006-y
https://doi.org/10.1007/s13389-011-0006-y
https://hal.archives-ouvertes.fr/hal-01787439
https://hal.archives-ouvertes.fr/hal-01787439
https://doi.org/10.1007/978-3-642-17499-5_4
https://doi.org/10.1007/978-3-642-17499-5_4
http://doi.acm.org/10.1145/1344671.1344729
http://doi.acm.org/10.1145/3274694.3274696
http://doi.acm.org/10.1145/3274694.3274696
http://doi.acm.org/10.1145/3020078.3021744

FPGA, CPU, GPU, and ASIC,” in 2016 International Conference on
Field-Programmable Technology (FPT), Dec 2016, pp. 77–84.

[36] H. Yonekawa and H. Nakahara, “On-chip memory based binarized
convolutional deep neural network applying batch normalization free
technique on an FPGA,” in 2017 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), May 2017,
pp. 98–105.

[37] T. S. Messerges, “Using second-order power analysis to attack DPA
resistant software,” in Cryptographic Hardware and Embedded Systems
— CHES 2000, Ç. K. Koç and C. Paar, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2000, pp. 238–251.

[38] M.-L. Akkar and L. Goubin, “A generic protection against high-order
differential power analysis,” in Fast Software Encryption, T. Johansson,
Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 192–205.

[39] K. Tiri and I. Verbauwhede, “A logic level design methodology for a
secure DPA resistant ASIC or FPGA implementation,” in Proceedings
Design, Automation and Test in Europe Conference and Exhibition,
vol. 1, Feb 2004, pp. 246–251 Vol.1.

[40] O. Reparaz, S. Sinha Roy, F. Vercauteren, and I. Verbauwhede, A
masked Ring-LWE implementation. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2015, pp. 683–702.

[41] T. Schneider and A. Moradi, “Arithmetic addition over boolean masking
towards first- and second-order resistance in hardware.”

[42] Y. Hori, T. Katashita, A. Sasaki, and A. Satoh, “SASEBO-GIII: A
hardware security evaluation board equipped with a 28-nm fpga,” in
The 1st IEEE Global Conference on Consumer Electronics 2012, Oct
2012, pp. 657–660.

[43] D. R. E. Gnad, J. Krautter, and M. B. Tahoori, “Leaky noise:
New side-channel attack vectors in mixed-signal IoT devices,” IACR
Transactions on Cryptographic Hardware and Embedded Systems,
vol. 2019, no. 3, pp. 305–339, May 2019. [Online]. Available:
https://tches.iacr.org/index.php/TCHES/article/view/8297

[44] O. Reparaz, R. de Clercq, S. S. Roy, F. Vercauteren, and I. Verbauwhede,
“Additively homomorphic ring-LWE masking,” in Post-Quantum Cryp-
tography, T. Takagi, Ed. Cham: Springer International Publishing, 2016,
pp. 233–244.

[45] A. Moradi and F.-X. Standaert, “Moments-correlating DPA,” in
Proceedings of the 2016 ACM Workshop on Theory of Implementation
Security, ser. TIS ’16. New York, NY, USA: ACM, 2016, pp. 5–15.
[Online]. Available: http://doi.acm.org/10.1145/2996366.2996369

[46] B. Gierlichs, L. Batina, P. Tuyls, and B. Preneel, “Mutual information
analysis,” in International Workshop on Cryptographic Hardware and
Embedded Systems. Springer, 2008, pp. 426–442.

[47] G. Cassiers and F.-X. Standaert, “Towards globally optimized masking:
From low randomness to low noise rate,” IACR Transactions on
Cryptographic Hardware and Embedded Systems, vol. 2019, no. 2, pp.
162–198, Feb. 2019. [Online]. Available: https://tches.iacr.org/index.
php/TCHES/article/view/7389

[48] T. Sugawara, “3-share threshold implementation of AES s-box without
fresh randomness,” IACR Transactions on Cryptographic Hardware and
Embedded Systems, vol. 2019, no. 1, pp. 123–145, Nov. 2018. [Online].
Available: https://tches.iacr.org/index.php/TCHES/article/view/7336

[49] L. De Meyer, V. Arribas, S. Nikova, V. Nikov, and V. Rijmen, “MM:
Masks and macs against physical attacks,” IACR Transactions on
Cryptographic Hardware and Embedded Systems, vol. 2019, no. 1, pp.
25–50, Nov. 2018. [Online]. Available: https://tches.iacr.org/index.php/
TCHES/article/view/7333

[50] I. Levi, D. Bellizia, and F.-X. Standaert, “Reducing a masked
implementation’s effective security order with setup manipulations,”
IACR Transactions on Cryptographic Hardware and Embedded
Systems, vol. 2019, no. 2, pp. 293–317, Feb. 2019. [Online]. Available:
https://tches.iacr.org/index.php/TCHES/article/view/7393

[51] T. Moos, A. Moradi, T. Schneider, and F.-X. Standaert, “Glitch-resistant
masking revisited,” IACR Transactions on Cryptographic Hardware and
Embedded Systems, pp. 256–292, 2019.

[52] V. Immler, R. Specht, and F. Unterstein, “Your rails cannot hide from
localized EM: how dual-rail logic fails on FPGAs,” in International Con-
ference on Cryptographic Hardware and Embedded Systems. Springer,
2017, pp. 403–424.

[53] S. Chari, J. R. Rao, and P. Rohatgi, “Template attacks,” in Interna-
tional Workshop on Cryptographic Hardware and Embedded Systems.
Springer, 2002, pp. 13–28.

[54] H. Maghrebi, T. Portigliatti, and E. Prouff, “Breaking cryptographic
implementations using deep learning techniques,” in International Con-

ference on Security, Privacy, and Applied Cryptography Engineering.
Springer, 2016, pp. 3–26.

[55] C. Clavier, B. Feix, G. Gagnerot, M. Roussellet, and V. Verneuil,
“Horizontal correlation analysis on exponentiation,” in International
Conference on Information and Communications Security. Springer,
2010, pp. 46–61.

[56] P. Kocher, “Obvious in hindsight: From side channel attacks to the
security challenges ahead,” 2016, invited talk at CHES & Crypto
2016. [Online]. Available: https://iacr.org/workshops/ches/ches2016/
presentations/CHES16 invited.pdf

https://tches.iacr.org/index.php/TCHES/article/view/8297
http://doi.acm.org/10.1145/2996366.2996369
https://tches.iacr.org/index.php/TCHES/article/view/7389
https://tches.iacr.org/index.php/TCHES/article/view/7389
https://tches.iacr.org/index.php/TCHES/article/view/7336
https://tches.iacr.org/index.php/TCHES/article/view/7333
https://tches.iacr.org/index.php/TCHES/article/view/7333
https://tches.iacr.org/index.php/TCHES/article/view/7393
https://iacr.org/workshops/ches/ches2016/presentations/CHES16_invited.pdf
https://iacr.org/workshops/ches/ches2016/presentations/CHES16_invited.pdf

	I Introduction
	II Threat Model and Relation to Prior Work
	III BNN and the Target Implementation
	III-A Neural Network Classifiers
	III-B BNNs
	III-C Unprotected Hardware Design

	IV An Example of DPA on BNN Hardware
	V Side-Channel Countermeasures
	V-A Masking the Adder Tree
	V-A1 A Unique and Fundamental Challenge for Arithmetic Masking of Neural Networks
	V-A2 Addressing the Vulnerability with Hiding

	V-B Masking the Activation Function
	V-C Boolean to Arithmetic Share Conversion
	V-D Output Layer
	V-E The Entire Inference Engine

	VI Leakage and Overhead Evaluation
	VI-A Hardware Setup
	VI-B Side-Channel Test Methodology
	VI-C Attacks with PRNG off
	VI-D First-order Attacks with PRNG on
	VI-E Second Order Attacks with PRNG on
	VI-F Attacks on Hiding
	VI-G Masking Overheads

	VII Discussions
	VII-A Limitations of The Proposed Defense
	VII-B Comparison of Theoretical Attacks, Digital Side-Channels, and Physical Side-Channels
	VII-C Scaling to other Neural Networks

	VIII Conclusion
	IX Acknowledgements
	References

