

TROY OLSSON

PROGRAM MANAGER DARPA/MTO

N-ZERO: NEAR-ZERO POWER SENSING

Distribution Statement "A" Approved for Public Release, Distribution Unlimited

....

THE PROMISE OF THE INTERNET OF THINGS (IoT)

LIFETIME IS LIMITED BY ACTIVE WAKEUP CIRCUITRY

Event Activity (% of Time)

- Sensor nodes must be deployed for long durations at low cost
- Energy consumption is extremely limited
- Data is continuously processed but rarely worthy of communication
- Sensing is often time critical, as the source may only briefly be in proximity of the sensor
- Communication of a sensing event is often time critical

LIFETIME IS LIMITED BY ACTIVE WAKEUP CIRCUITRY

Event Activity (% of Time)

- Sensor nodes must be deployed for long durations at low cost
- Energy consumption is extremely limited
- Data is continuously processed but rarely worthy of communication
- Sensing is often time critical, as the source may only briefly be in proximity of the sensor
- Communication of a sensing event is often time critical

N-ZERO VISION: OFF BUT ALERT!

Event Activity (% of Time)

The second secon

N-ZERO passive sensor wake-up:

- Continuous operation and near-zero power processing
- Persistent sensing with greatly extended lifetime and reduced cost

POWER CONSUMPTION AND LIFETIME OF UNATTENDED SENSOR SYSTEM COMPONENTS

Lifetime from

a 30

mAhr button cell

THE N-ZERO ADVANTAGE

Unattended Ground Sensors

N-ZERO SENSOR PERFORMANCE

Sensor Type	Signature Detected > 95% POD	Interference w/ Specificity	Standby Power	
Acoustic	Vehicle at 10 m	Urban	20 nW	
Infrared	Wavelength-specific IR	Broadband thermal & other wavelengths	passive	
Chemical	~1 ppm of 1,5- diaminopentane	Ambient and pentane	passive	
RF	-80 dBm coded waveform	Urban	6 nW	

ZERO POWER IR SPECTRUM SENSOR

Olan, Zhenyun, et al. "Zero-power light-actuated micromechanical relay." Micro Electro Mechanical Systems (MEMS), 2017 IEEE 30th International Conference on. IEEE, 2017.

IR SENSING WITHOUT POWER

ALWAYS-ON nW RECEIVER FOR NETWORKED IOT

H. Jiang, et al. "A 4.5 nW wake-up radio with– 69dBm sensitivity." *IEEE Solid-State Circuits Conference (ISSCC)*, 2017.

N-ZERO HAS SIGNIFICANTLY ADVANCED LOW-POWER RF

David D. Wentzloff, "Low Power Radio Survey," [Online]. www.eecs.umich.edu/wics/low_power_radio_survey.html

H. Jiang, et al. "A 4.5 nW wake-up radio with– 69dBm sensitivity." *IEEE Solid-State Circuits Conference (ISSCC)*, 2017.

J. Moody et al., "A –76dBm 7.4nW wakeup radio with automatic offset compensation," 2018 IEEE International Solid - State Circuits Conference - (ISSCC), San Francisco, CA, 2018, pp. 452-454..

LOW-POWER PROCESSING

- ARM Cortex-M33 with DSP extensions
- Shutdown power: 10nW
- Active power: 10uW-2mW (0.1-50MHz)
- ROM capacity: 128kB
- RAM capacity: 16kB active + 4kB shutdown

How does the DoD use the technology?

N-ZERO PERSISTENT SENSING OPPORTUNITIES

- New class of nW systems
- RF, acoustic, seismic, IR, and chemical modalities
- Orders-of-magnitude improvement in lifetime and battery size
- Persistent sensing without sleep-cycling

MICROSYSTEMS FOR THE IOT

ERI ELECTRONICS RESURGENCE INITIATIVE

SUMMIT

2018 | SAN FRANCISCO, CA | JULY 23-25

DENNIS SYLVESTER

UNIVERSITY OF MICHIGAN

NEAR ZERO-POWER MACHINE LEARNING PROCESSORS FOR CONTINUOUS ACOUSTIC SENSING

- Dennis Sylvester, David Blaauw, Hun Seok Kim
- University of Michigan

THIS RESEARCH WAS DEVELOPED WITH FUNDING FROM THE DEFENSE ADVANCED RESEARCH PROJECTS AGENCY (DARPA). THE VIEWS, OPINIONS AND/OR FINDINGS EXPRESSED ARE THOSE OF THE AUTHOR AND SHOULD NOT BE INTERPRETED AS REPRESENTING THE OFFICIAL VIEWS OR POLICIES OF THE DEPARTMENT OF DEFENSE OR THE U.S. GOVERNMENT.

PROPOSED SYSTEM OVERVIEW

- ~10nW acoustic sensing and object recognition microsystem/
- Initial targets: generator, car, truck
- Later targets: voice activity, keywords

SIGNAL PROPERTIES EXPLOITED FOR NEAR ZERO POWER DSP

FEATURE EXTRACTION

DFT performed only on the discrete tones of interest (Tol)

(X[0]			1	1		1	(x[0]
X[1]		1	W	W2		WN-1	x[1]
X[2]		1	W2	W^4	<	W2(N-1)	x[2]
X[3]	=	1	W	We		W ^{B(N-1)} ×	\sum
		÷					
X[N-2]		1	W ^{N-2}	₩ ^{2(N-2)}		W(N-2) (N-2)	x[n-2]
X[N-1]		1	W ^{N-1}	₩ ^{2(N-1)}		W(N-1) (N-1)	x[n-1]
						$W = e^{-j2\pi/N}$	

- DFT performed only on the discrete tones of interest (Tol)
 - Serialized tone-by-tone computation

- DFT performed only on the discrete tones of interest (Tol)
 - Serialized tone-by-tone computation

- DFT performed only on the discrete tones of interest (Tol)
 - Serialized tone-by-tone computation ('tone' signal is complex valued)

- DFT performed only on the discrete tones of interest (Tol)
 - Serialized tone-by-tone computation ('tone' signal is complex valued)

- DFT performed only on the discrete tones of interest (Tol)
 - Serialized tone-by-tone computation ('tone' signal is complex valued)

PROGRAMMABLE, NEAR-ZERO POWER DSP ARCHITECTURE

N-ZERO TARGET CLASSIFICATION

- Targets: generator, small car, truck
- 32x1 ToI DFT feature input vector → 5 input frames combined to 160x1 input vector
- Weights quantized to 8-bit
- Fully connected NN with 2 layers, softmax output, moving average postprocessing
- Programmable processor: other NN configurations possible

N-ZERO TARGET CLASSIFICATION

ENVIRONMENT-SPECIFIC TRAINING

ENVIRONMENT-SPECIFIC TRAINING

N-ZERO V2 DIE PHOTO

PHASE 2 HARDWARE TESTING

Testing condition emulates 5m distance.

A MORE COMPLETE AUDIO MICROSYSTEM

- Overall system size
 - 6×5×4 mm³
 - Features
 - Real-time audio acquisition with low power compression
 - 15-38 mins of recording on 1 charge, 4.7uW avg power
 - 8Mb Flash storage
 - Solar energy harvesting
 - Wireless link
 - General purpose µ-processor

•

A POSSIBLE PATHWAY

 Self-sustaining autonomous audio detection/recognition microsystem incl. moderate range RF (~50m)

SUMMARY

- Ultra-low power audio detection possible, in mm-scale form factors
 - Unobtrusive, long lifetime
- Applications in surveillance/monitoring, as well as non-military spaces
 - Truly smart user interfaces for next generation IoT devices
- Combines advances in fully integrated DNNs, ULP analog/mixed-signal circuits
- Commercialization of mm-scale systems being pursued via Cubeworks
- Always-on voice control in ULP IoT being pursued via Ambiq Micro
- DNN in edge devices being pursued via Mythic

Distribution Statement "A" Approved for Public Release, Distribution Unlimited

MYTHIC

ERI ELECTRONICS RESURGENCE INITIATIVE

SUMMIT

2018 | SAN FRANCISCO, CA | JULY 23-25