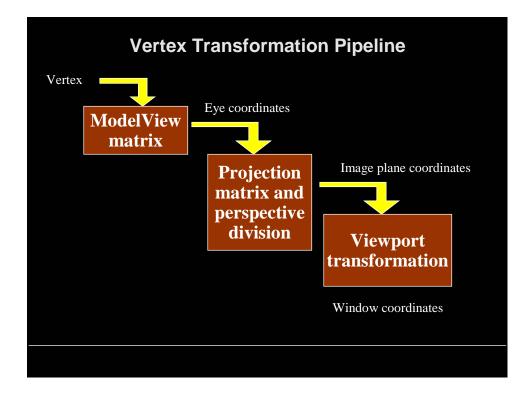
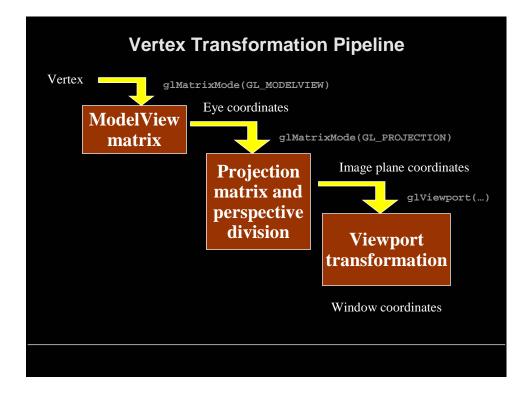


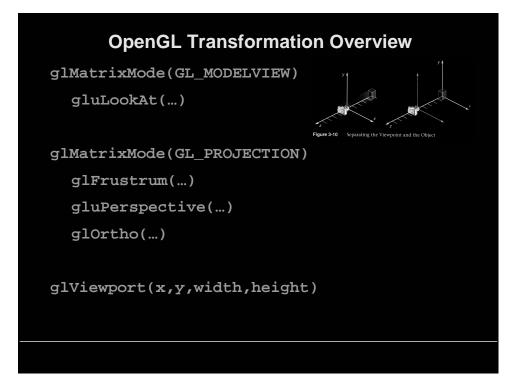
Getting Geometry on the Screen

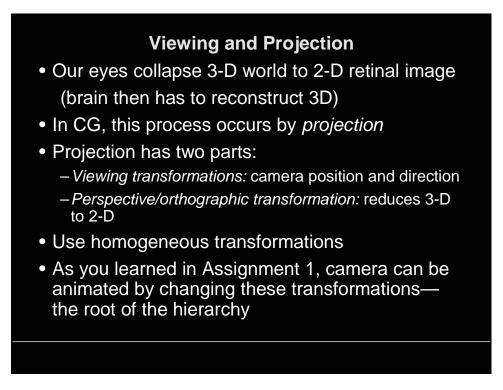
Given geometry in the world coordinate system, how do we get it to the display?

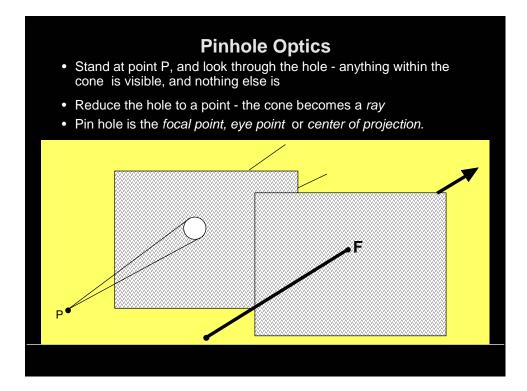
- Transform to camera coordinate system
- Transform (warp) into canonical view volume
- Clip
- Project to display coordinates
- (Rasterize)

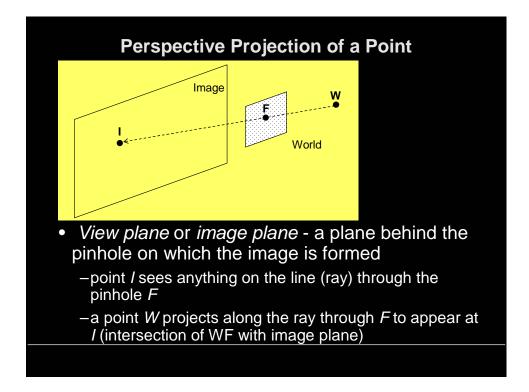


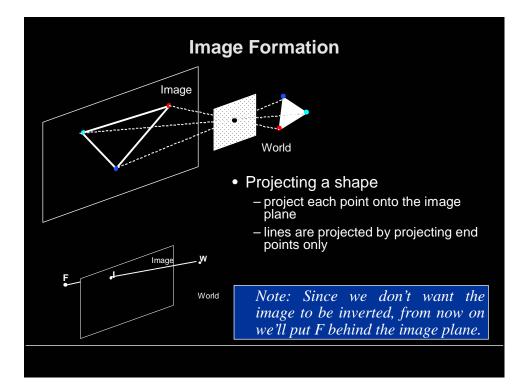


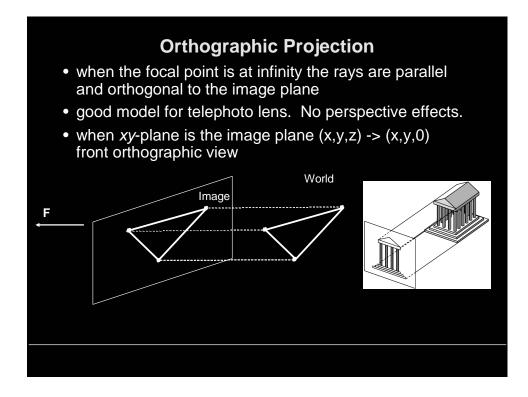


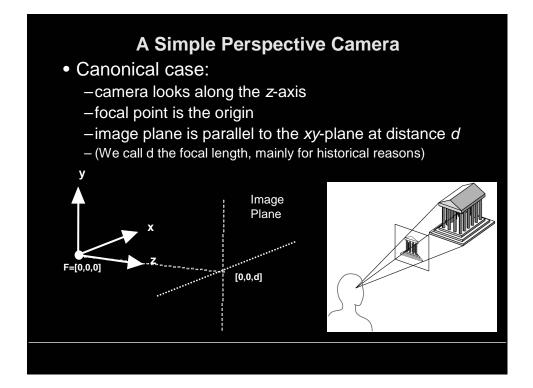


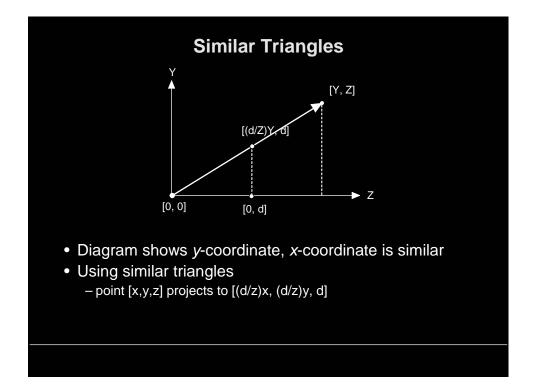












A Perspective Projection Matrix

•Projection using homogeneous coordinates:

- transform [x, y, z] to [(d/z)x, (d/z)y, d]

$$\begin{bmatrix} d & 0 & 0 & 0 \\ 0 & d & 0 & 0 \\ 0 & 0 & d & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}^{x} = \begin{bmatrix} dx & dy & dz & z \end{bmatrix} \Rightarrow \begin{bmatrix} \frac{d}{z}x & \frac{d}{z}y & d \end{bmatrix}$$

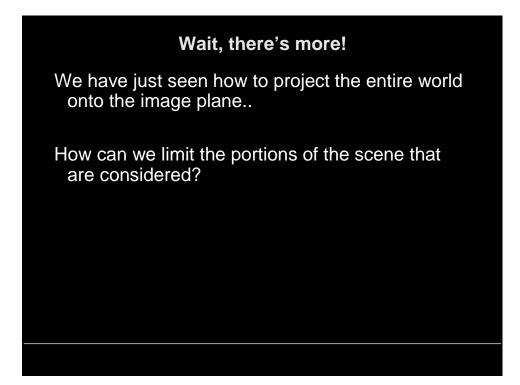
Divide by 4th coordinate

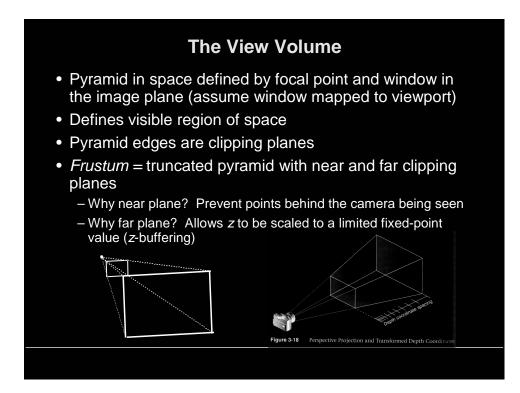
(the "w" coordinate)

• 2-D image point:

- discard third coordinate

- apply viewport transformation to obtain physical pixel coordinates

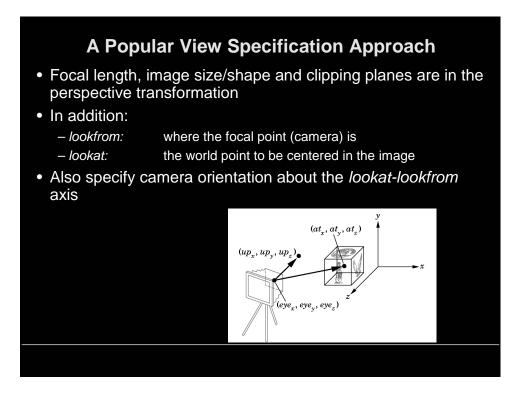


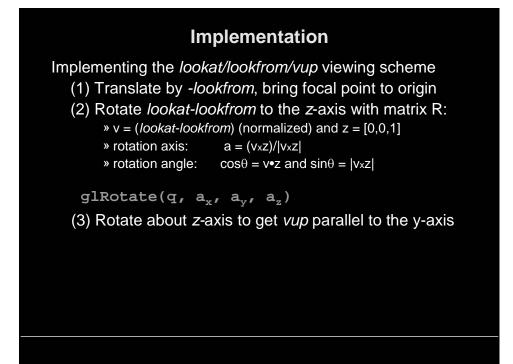


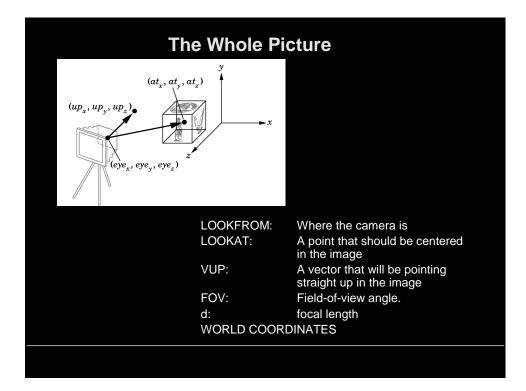
But wait
 What if we want the camera somewhere other than the canonical location?
 Alternative #1: derive a general projection matrix. (hard)
 Alternative #2: transform the world so that the camera is in canonical position and orientation (<i>much simpler</i>)
These transformations are viewing transformations

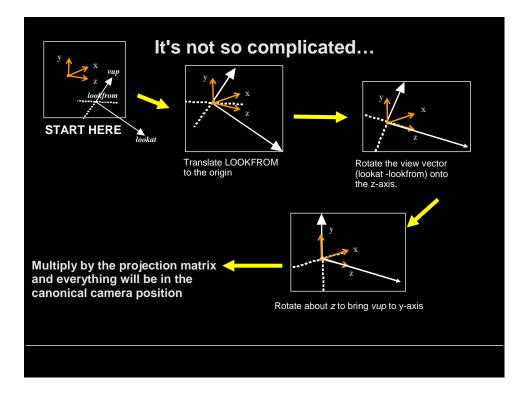
Camera Control Values

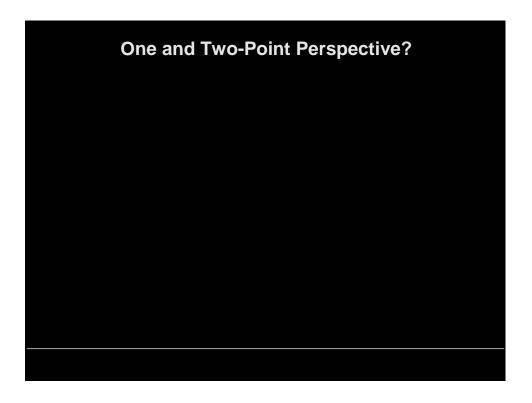
- All we need is a single translation and angle-axis rotation (orientation), but...
- Good animation requires good camera control--we need better control knobs
- Translation knob move to the lookfrom point
- Orientation can be specified in several ways: - specify camera rotations
 - specify a *lookat* point (solve for camera rotations)

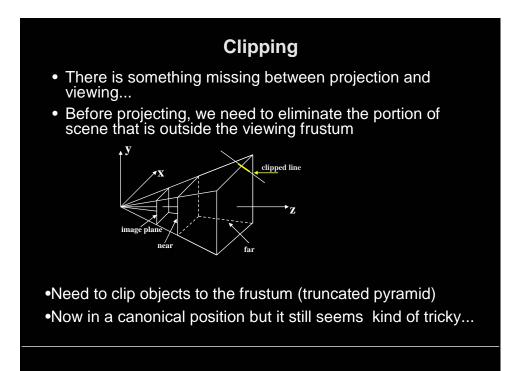


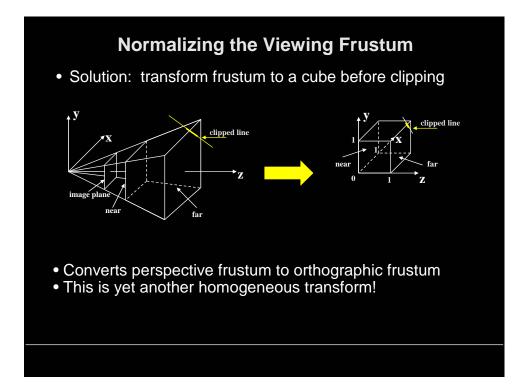




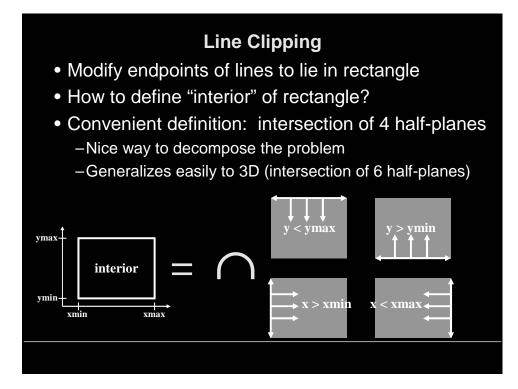


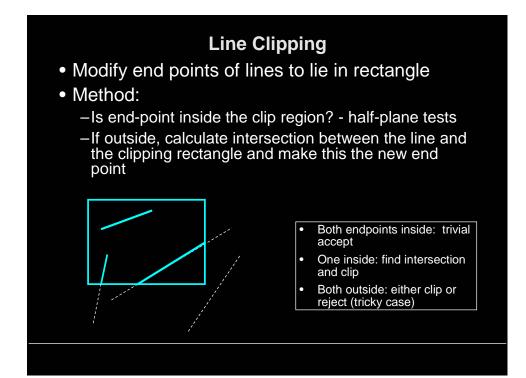


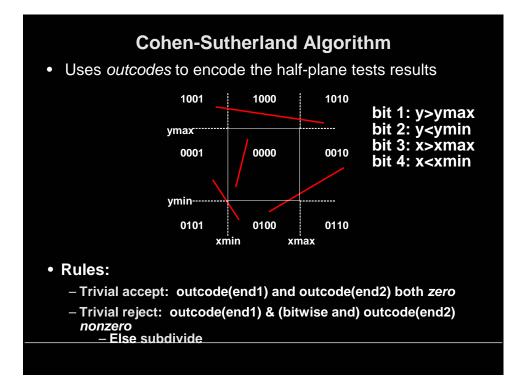


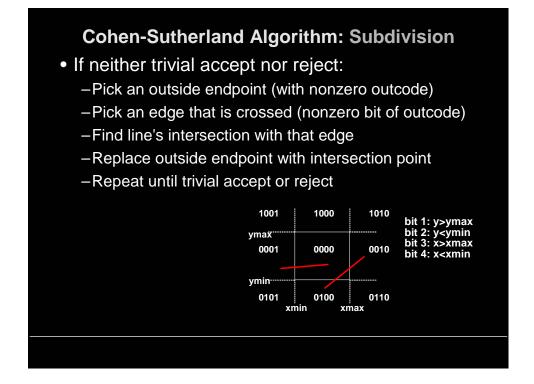


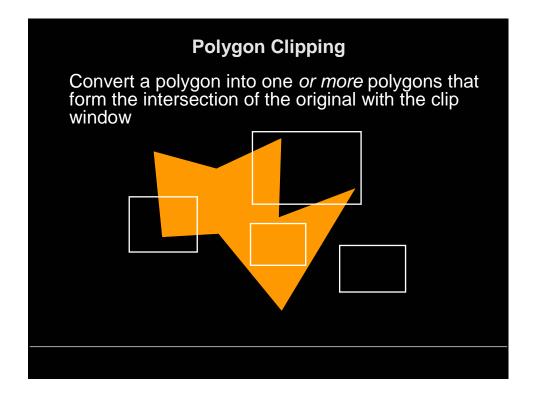
Clipping to a Cube Determine which parts of the scene lie within cube We will consider the 2D version: clip to rectangle This has its own uses (viewport clipping) This during scan conversion (rasterization) - check per pixel or end-point Clip before scan conversion We will cover Clip to rectangular viewport before scan conversion











Sutherland-Hodgman **Polygon Clipping Algorithm**

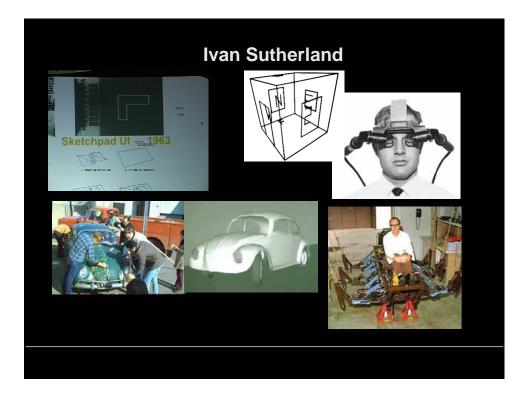
- Subproblem:
 - -clip a polygon (vertex list) against a single clip plane
 - -output the vertex list(s) for the resulting clipped polygon(s)
- Clip against all four planes
 - -generalizes to 3D (6 planes)
 - -generalizes to any convex clip polygon/polyhedron

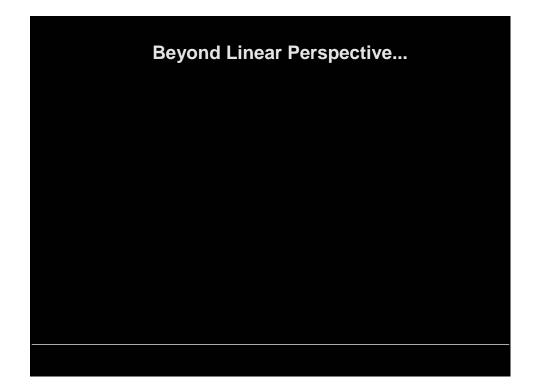
Sutherland-Hodgman Polygon Clipping Algorithm (Cont.)

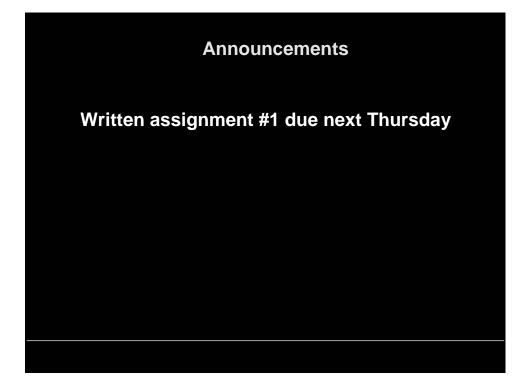
To clip vertex list against one half-plane:

- if first vertex is inside output it
- loop through list testing inside/outside transition output depends on transition:
 - > in-to-in: output vertex
 - > out-to-out: no output
 - > in-to-out: output intersection

> out-to-in: output intersection and vertex







Virtual Trackballs

- Imagine world contained in crystal ball, rotates about center
- Spin the ball (and the world) with the mouse
- Given old and new mouse positions
 - project screen points onto the sphere surface
 - rotation axis is normal to plane of points and sphere center
 angle is the angle between the radii
- There are other methods to map screen coordinates to rotations

