

Generic building blocks for PL in CNES based on CPUGEN / LVCUGEN / BASILES

Julien GALIZZI

ADCSS 2014 – ESTEC, Noordwijk – 29/10/2014

- Feedbacks from payloads developments in the last 10 years
- How to be more efficient?
- A proactive strategy : components and tools to ease the institutes developments
- A HW building block for payloads : CPUGEN
- A OBSW building block : LVCUGEN components
- A test means : BASILES SVF and emulators
- Status and perspectives

Lessons learnt from past decade of scientific payload software development

- Growing complexity / autonomy of payloads
- More and more on-board data processing
- Standardisation of monitoring and control (PUS) applicable down to payload / instrument software...
- Real time software engineering standards to apply (E40, Q80).
- Communication with PF to handle, FDIR, modes, ...
- Large variety of hardware architectures depending on mission needs
- Payload / instrument software are developed from scratch in the scope of each mission.
- Most of the developments are related to non-science features or tools that are present in the frame of each project (PUS, PF communication, test means).
- => Scientific institutes spend more and more efforts working out of their core speciality : science.

How to be more efficient?

- CNES is in charge of securing the developments of French scientific institutes.
- Based on this experience, CNES decided to develop and qualify HW & SW building blocks to :
 - ◆ Ease the developments of institutes.
 - → Reduce the CNES manpower on projects.
- These components are designed to be used in the frame of any project to avoid the development of an already-existing feature/product that covers the need.
 - => save costs
 - => improve maturity of recurrent functions
- This will allow scientific institutes to focus their efforts on their real added-value :
 SCIENCE.

A proactive strategy : components and tools to ease the institutes developments

What are the targeted components?

- A HW board :
 - → Allowing flexibility: capability to host different types of functions
 - → With generic I/O, HW processing and HK capabilities
- Some OBSW components: LVCUGEN. Supplying the generic OBSW features required by all the payload software (PUS, modes management, dataload, I/Os, FDIR, ...).
- A SVF: BASILES to communalize the developments of test means.

How to make them available to institutes?

CNES takes at its own charges the development and qualification of these components
 + their deployment and support.

A HW building block for payloads: CPUGEN

The CPUGEN is a high performance processor module, based on radiation hardened components and compliant with ECSS class 2, designed for space applications.

The CPUGEN module has been developed and fully validated.

EM available.

■ Main Features:

- Core: 2 LEON3 (GR712RC) at 48MHz / 64MHz / 80MHz
- FPGA :dedicated to mission pre-processing (ATF280 or ATFS450 TBC reprogrammable)
- Validated µP-FPGA interface (5% ATF280)
- MRAM: 16Mbytes with secured Dual boot
- RAM: 256Mbytes
- US Free
- Interface Links:
 - 4 SPACEWIRE at 160MHz
 - 2 redundant 1553 RT or BC
 - 2 redundant CAN
 - 2 UART
 - IFCU: LVDS or RS422
 - 26 GPIO signals
 - Debug

OBSW building blocks for payloads: LVCUGEN

OBSW building blocks for payloads: LVCUGEN

- Use Time & Space Partitioning to decouple science functions from PF and M&C ones as if they were in different computers.
- => each function can be developed according to its own level of criticality and not according to the highest one hosted in the computer.
- Use virtualization to ease the portability of the components.
- Provide an execution framework with configurable generic subsets that virtualizes the HW (covering I/O management, FDIR, Mode Management & DataLoad, Mass Memory Management, Instrumentation) and cover Monitoring & Control services (PUS).
- The scientific processing will have the possibility, on their own board, to use one or more of these subsets and to develop their software without taking care of the other « non-science » functionnalities and benefiting from the virtualization of the HW.

<u>Objectives</u>: provide to scientific institutes an off-the-shelves framework with already mature building blocks, allowing them to focus on scientific processings.

OBSW building blocks for payloads: LVCUGEN

A generic test means: BASILES SVF and emulators

Status

CPUGEN: already available in EM with ATF280 with its dedicated EGSE.

LVCUGEN:

★ XtratuM: Specification & validation strategy ongoing in a GSTP5 contract. Qualification in the frame of an ESA GSTP6 to be launched. Multicore supported.

+ GuestOS:

- » RTEMS: qualified by ESA/Edisoft
- » Lithos (ARINC-653 API): qualification ongoing by Fentiss (to be finished for spring 2015).
- » RTEMS multicore: available (non qualified version).
- ◆ Generic partitions: IOServer, Modes Management & DataLoad, FDIR: qualified for end 2014 by CNES/CSSI.
- **♦ OPISS library** : qualified by CNES/TAS.
- → PUS library : qualified for spring 2015 by CNES/CSSI.
- BASILES: available.

LVCUGEN runs on top of CPUGEN and Basiles will be used as test mean in the coming months.

Perspectives

• CPUGEN - candidate for :

- ♦ Scientific missions
- ◆ Any computer required to handle one or several instruments (Payload Management Unit).
- → Any projects that wants it!

LVCUGEN – candidate for :

- → OBSW Mass Memory for Myriade Evolution, SWOT by STEEL Electronics
- ◆ OBSW MAJIS for JUICE by IAS
- → OBSW Eyesat (nanosat) by students
- → Any project that wants it!
- BASILES has become the base network to develop operational simulators for all CNES projects.
 - ◆Operational simulators : CSO, MYR EVOL/MERLIN (satellite simulator), SNOB and MEDON (balloon simulators)
 - Simulators for SVF: LVCUGEN
 - ◆Study simulators: ARGOS 4 and SMAR (system simulator), CSO (AOCS study simulator), AGATA (OBSW simulator), electrical domain, thermal domain (study simulators)

Thanks for your attention...

Any question?

?

