Skip to main content
Log in

An integrated 8-12 GHz fractional-N frequency synthesizer in SiGe BiCMOS for satellite communications

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

We present an integrated fractional-N low-noise frequency synthesizer for satellite applications. By using two integrated VCOs and combining digital and analog tuning techniques, a PLL lock range from 8 to 12 GHz is achieved. Due to a small VCO fine tuning gain and optimized charge pump output biasing, the phase noise is low and almost constant over the tuning range. All 16 sub-bands show a tuning range above 900 MHz each, allowing temperature compensation without sub-band switching. This makes the synthesizer robust against variations of the device parameters with process, supply voltage, temperature and aging. The measured phase noise is −87 dBc/Hz and −106 dBc/Hz at 10 kHz and 1 MHz offset, respectively. In integer-N mode, phase noise values down to −98 dBc/Hz at 10 kHz and −111 dBc/Hz at 1 MHz offset, respectively, were measured.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Vaucher, C.S., Apeldoorn, O., Apostolidou, M., Dekkers, J., Farrugia, A., Gul, H., Kramer, N., & Praamsma, L. (2005). Silicon-germanium ICs for satellite microwave front-ends. In Proceedings of the IEEE bipolar/BiCMOS circuits and technology meeting (BCTM 2005), Santa Barbara, USA, pp. 196–203.

  2. Follmann, R., Köther, D., Kohl, T., Engels, M., Podrebersek, T., Heyer, V., Schmalz, K., Herzel, F., Winkler, W., Osmany, S., & Jagdhold, U. (2008). A single SiGe chip fractional-N 275 MHz...20 GHz PLL with integrated 20 GHz VCO. In IEEE MTT-S international microwave symposium, Atlanta, pp. 355–358.

  3. Reynolds, S. K., Floyd, B. A., Pfeiffer, U. R., Beukema, T., Grzyb, J., Haymes, C., Gaucher, B., & Soyuer, M. (2006). A silicon 60-GHz receiver and transmitter chipset for broadband communications. IEEE Journal of Solid-State Circuits, 41(12), 2820–2831.

    Article  Google Scholar 

  4. Osmany, S. A., Herzel, F., Scheytt, J. C., Schmalz, K., & Winkler, W. (2007). An integrated 19-GHz low-phase-noise frequency synthesizer in SiGe BiCMOS technology. In Proceedings of the 2007 IEEE compound semiconductor IC symposium (CSIC 2007), Portland, USA, pp. 191–194.

  5. Herzel, F., Glisic, S., Osmany, S. A., Scheytt, J. C., Schmalz, K., Winkler, W., & Engels, M. (2008). A fully integrated 48-GHz low-noise PLL with a constant loop bandwidth. In Proceedings of the 2008 topical meeting on silicon monolithic integrated circuits in RF circuits (SiRFIC 2008), Orlando, USA, pp. 82–85.

  6. Perrot, M. H., Tewksbury III, T. L., & Sodini, C. G. (1997). A 27-mW fractional-N synthesizer using digital compensation for 2.5-Mb/s GFSK modulation. IEEE Journal of Solid-State Circuits, 44(12), 2048–2059.

    Article  Google Scholar 

  7. Tiebout, M., Sandner, C., Wohlmuth, H.-D., Da Dalt, N., & Thaller, E. (2004). A fully integrated 13 GHz ΔΣ fractional-N PLL in 0.13 μm CMOS. In IEEE international solid-state circuits conference (ISSCC) digital technical papers, San Francisco, pp. 386–387.

  8. Pellerano, S., Mukhopadhyay, R., Ravi, A., Laskar, J., & Palaskas, Y. (2008). A 39.1-to-41.6GHz ΔΣ fractional-N frequency synthesizer in 90nm CMOS. In IEEE international solid-state circuits conference (ISSCC) digital technical papers, San Francisco, pp. 484–485.

  9. Herzel, F., Osmany, S. A., Schmalz, K., Winkler, W., Scheytt, J. C., Podrebersek, T., Follmann, R., & Heyer, H.-V. (2009). An integrated 18 GHz fractional-N PLL in SiGe BiCMOS technology for satellite communications. In Proceedings of 2009 IEEE radio frequency integrated circuits symposium (RFIC 2009), Boston, USA, pp. 329–332.

  10. Cressler, J. D. (1998). SiGe HBT technology: A new contender for Si-based RF and microwave circuit applications. IEEE Transactions on Microwave Theory and Techniques, 46(5), 572–589.

    Article  Google Scholar 

  11. Niu, G. (2005). Noise in SiGe HBT RF technology: Physics, modeling, and circuit implementations. Proceedings of the IEEE, 93(9), 1583–1597.

    Article  MathSciNet  Google Scholar 

  12. Osmany, S. A., Herzel, F., Scheytt, J. C., Schmalz, K., & Winkler, W. (2009). An integrated 22-GHz low-phase-noise VCO with digital tuning in SiGe BiCMOS technology. Electronics Letters, 45(1), 39–40.

    Article  Google Scholar 

  13. Kral, A., Behbahani, F., & Abidi, A. A. (1998). RF-CMOS oscillators with switched tuning. In Proceedings of 1998 custom integrated circuits conference (CICC’98), Santa Clara, USA, pp. 555–558.

  14. Lin, T.-H., & Kaiser, W. J. (2000). A 900MHz, 2.5mA CMOS frequency synthesizer with an automatic SC tuning loop. In Proceedings of 2000 custom integrated circuits conference (CICC’00), Orlando, USA, pp. 375–378.

  15. Lo, C.-W., & Luong, H. C. (2002). A 1.5-V 900-MHz monolithic CMOS fast-switching frequency synthesizer for wireless applications. IEEE Journal of Solid-State Circuits, 37(4), 459–470.

    Article  Google Scholar 

  16. Craninckx, J., & Steyaert, M. S. J. (1998). A fully integrated CMOS DCS-1800 frequency synthesizer. IEEE Journal of Solid-State Circuits, 33(12), 2054–2065.

    Article  Google Scholar 

  17. Koo, Y., Huh, H., Cho, Y., Lee, J., Park, J., Lee, K., Jeong, D.-K., & Kim, W. (2002). A fully integrated CMOS frequency synthesizer with charge-averaging charge pump and dual-path loop filter for PCS- and cellular-CDMA wireless systems. IEEE Journal of Solid-State Circuits, 37(5), 536–542.

    Article  Google Scholar 

  18. Herzel, F., Fischer, G., & Gustat, H. (2003). An integrated CMOS RF synthesizer for 802.11a wireless LAN. IEEE Journal of Solid-State Circuits, 38(10), 1767–1770.

    Article  Google Scholar 

  19. Williams, S., Thompson, H., Hufford, M., & Naviasky, E. (2004). An improved CMOS ring oscillator PLL with less than 4ps RMS accumulated jitter. In Proceedings of 2004 custom integrated circuits conference (CICC’04), San Jose, USA, pp. 151–154.

  20. Wu, T., Hanumolu, P. K., Mayaram, K., & Moon, U.-K. (2007). A 4.2 GHz PLL frequency synthesizer with an adaptively tuned coarse loop. In Proceedings of 2007 custom integrated circuits conference (CICC’07), San Jose, USA, pp. 547–550.

  21. Aparicio, R., & Hajimiri, A. (2002). A noise-shifting differential Colpitts VCO. IEEE Journal of Solid-State Circuits, 37(12), 1728–1736.

    Article  Google Scholar 

  22. Fard, A., & Andreani, P. (2007). An analysis of 1/f 2 phase noise in bipolar Colpitts oscillators (with a digression on bipolar differential-pair LC oscillators). IEEE Journal of Solid-State Circuits, 42(2), 374–384.

    Article  Google Scholar 

  23. Mazzanti, A., & Andreani, P. (2008). Class-C harmonic CMOS VCOs, with a general result on phase noise. IEEE Journal of Solid-State Circuits, 43(12), 2716–2729.

    Article  Google Scholar 

  24. Winkler, F., Heyer, H.-V., Herzel, F., Folio, B.-M., Glass, B., & Miquel, C. (2008). First time common synthesis and simulation of ECL and CMOS parts at a BiCMOS chips based on the IHP SGB25V library. In Proceedings of the second international workshop on analog and mixed signal Iintegrated circuits for space applications (AMICSA 2008), Cascais, Portugal.

  25. Gustat, H., Jagdhold, U., Winkler, F., Appel, M., & Kell, G. (2008). Differential ECL/CML synthesis for SiGe BiCMOS. In Proceedings of the 2008 IEEE compound semiconductor IC symposium (CSIC 2008), Monterey, USA, pp. 1–4.

  26. Knoll, D., Heinemann, B., Barth, R., Blum, K., Borngräber, J., Drews, J., Ehwald, K.-E., Fischer, G., Fox, A., Grabolla, T., Haak, U., Höppner, W., Korndörfer, F., Kuck, B., Marschmeyer, S., Richter, H., Rücker, H., Schley, P., Schmidt, D., Scholz, R., Senapati, B., Tillak, B., Winkler, W., Wolanski, D., Wolf, C., Wulf, H.-E., Yamamoto, Y., & Zaumseil, P. (2004). A modular, low-cost SiGe:C BiCMOS process featuring high-fT and high-BV CEO transistors. In Proceedings of the IEEE bipolar/BiCMOS circuits and technology meeting (BCTM), Montreal, Canada, pp. 241–244.

  27. Kim, S., Lee, K., Moon, Y., Jeong, D.-K., Choi, Y., & Lim, H.-K. (1997). A 960-Mb/s/pin interface for skew-tolerant bus using low jitter PLLl. IEEE Journal of Solid-State Circuits, 32(5), 691–700.

    Article  Google Scholar 

  28. Lam, C., & Razavi, B. (2000). A 2.6-GHz/5.2-GHz frequency synthesizer in 0.4-μm CMOS technology. IEEE Journal of Solid-State Circuits, 35(5), 788–794.

    Article  Google Scholar 

  29. Osmany, S. A., Herzel, F., Schmalz, K., & Winkler, W. (2007). Phase noise and jitter modeling for fractional-N PLLs. Advances in Radio Science, 5, 313–320.

    Article  Google Scholar 

  30. Chien, H.-M., Lin, T.-H., Ibrahim, B., Zhang, L., Rofougaran, M., Rofougaran, A., & Kaiser, W. J. (2004). A 4GHz fractional-N synthesizer for IEEE 802.11a. In 2004 Symposium on VLSI circuits digest of technical papers, Honolulu, USA, pp. 46–49.

  31. De Muer, B., & Steyaert, M. S. J. (2003). On the analysis of ΔΣ fractional-N frequency synthesizers. IEEE Transactions on Circuits and Systems II: Analog Digit. Signal Processing, 50(11), 784–793.

    Article  Google Scholar 

  32. Riley, T. A. D., Filiol, N. M., Du,Q., & Kostamovaara, J. (2003). Techniques for in-band phase noise reduction in ΔΣ synthesizers. IEEE Transactions on Circuits and Systems II: Analog Digit. Signal Processing, 50(11), 794–803.

    Article  Google Scholar 

  33. Pamarti, S., Jansson, L., & Galton, I. (2004). A wideband 2.4-GHz delta-sigma fractional-N PLL with 1-Mb/s in-loop modulation. IEEE Journal of Solid-State Circuits, 39(1), 49–62.

    Article  Google Scholar 

  34. Arora, H., Klemmer, N., Morizio, J. C., & Wolf, P. D. (2005). Enhanced phase noise modeling of fractional-N frequency synthesizers. IEEE Transactions on Circuits and Systems I: Regular Papers, 52(2), 379–395.

    Article  MathSciNet  Google Scholar 

  35. Hedayati, H., Bakkaloglu, B., & Khalil, W. (2006). Closed-loop nonlinear modeling of wideband ΣΔ fractional-N frequency synthesizers. IEEE Transactions Microwaes Theory Technique, 54(10), 3654–3663.

    Article  Google Scholar 

  36. Thornber, M., Thomas, G., & Leineweber, T. (2008). Integrated SiGe PLL synthesizer for space applications. In Proceedings of ESA workshop on advanced flexible telecom payloads, Noordwijk, The Netherlands, pp. 333–340.

  37. Valenta, V., Baudoin, G., & Villegas, M. (2008). Phase noise analysis of PLL based frequency synthesizers for multi-radio mobile terminals. In Proceedings of 3rd international conference on cognitive radio oriented wireless networks and communications, Singapore, pp. 1–4.

  38. Herzel, F., & Winkler, W. (2005). A 2.5-GHz eight-phase VCO in SiGe BiCMOS technology. IEEE Transactions on Circuits and Systems-II: Express Briefs, 52(3), 140–144.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the European Space Agency (ESA) and the German DLR (Deutsches Zentrum für Luft- und Raumfahrt). The authors thank the IHP technology team for the fabrication of the test chips.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Herzel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herzel, F., Osmany, S.A., Hu, K. et al. An integrated 8-12 GHz fractional-N frequency synthesizer in SiGe BiCMOS for satellite communications. Analog Integr Circ Sig Process 65, 21–32 (2010). https://doi.org/10.1007/s10470-010-9454-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-010-9454-z

Keywords

Navigation