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Abstract. The power of an accurate model for describing a physical
process or designing a physical system is beyond doubt. The currently
used reliability model for physically unclonable functions (PUFs) assumes
an equally likely error for every evaluation of every PUF response bit.
This limits an accurate description since experiments show that certain
responses are more error-prone than others, but this fixed error rate
model only captures average case behavior. We introduce a new PUF
reliability model taking this observed heterogeneous nature of PUF cells
into account. An extensive experimental validation demonstrates the new
predicted distributions describe the empirically observed data statistics
almost perfectly, even considering sensitivity to operational temperature.
This allows studying PUF reliability behavior in full detail, including
average and worst case probabilities, and is an invaluable tool for designing
more efficient and better adapted PUFs and PUF-based systems.

1 Introduction

After a decade of ongoing scientific research and sustained technical de-
velopment, silicon PUF technology [1,2] is steadily finding its way into
electronic products [3,4]. To meet the high reliability and security con-
straints imposed by such applications, bare silicon PUFs don’t operate
on their own but are embedded in a system. The fundamental physical
security of such a system originates from the PUF implementation, but
considerable post-processing is involved to meet the overall requirements
and facilitate the intended application, e.g. key storage. Constructing a
PUF system is an intricate design exercise since it requires balancing
typically opposing goals between reliability, security and efficiency.

The starting point of a PUF system design is evidently the probabilistic
behavior of the PUF itself, both regarding reliability (error behavior) and
security (unpredictability behavior). The more insight one has in these
details, the better one is able to fine tune design choices, and the more
confidence one has in the obtained results. To consistently deal with a
PUF’s probabilistic behavior, an accurate model which closely fits empirical



statistics is of great importance. Such a model should be sufficiently generic
to confidently extrapolate predictions to unobserved points and allow
working with a variety of PUF constructions. It will proof an indispensable
tool for analyzing the design space of a PUF system and converging on
an optimized solution. The main focus of this work is the development
and analysis of a more accurate and generic reliability model for silicon
PUFs than the one in use today, and a demonstration of its advantages.

Related Work. The commonly used PUF reliability model, e.g. in [2,5,6,7,8,9]
and many others, is that of a fixed error rate, i.e. each evaluation of each
response bit is assumed equally likely to be wrong. Many details are lost
by reducing the reliability behavior to a single average-case parameter.
A first extension of this model, e.g. as used in [10,11,12], is the binary
differentiation between stable and unstable PUF response bits. This idea
is generalized in [13] which demonstrates that PUF cell reliabilities are
continuously distributed, from very unreliable to almost perfectly stable.

Contributions. In this work, we start from and greatly expand on the
model as proposed in [13], to describe PUF reliability behavior in a much
more accurate and detailed manner as has been done up to now. The basic
model from [13] is modified to more realistically describe error-behavior,
and extended to take environmental dependencies like temperature into
account. This new model is extensively validated on reliability data from
measurements of PUFs implemented in 65nm CMOS. The fit between
predicted distributions and empirical statistics is strikingly accurate at
all measured temperatures from −40◦C to +85◦C. Moreover, the model
proves to be very generic by being extremely accurate for different types
of memory-based PUF types, like the SRAM PUF [2], the buskeeper
PUF [14] and the D Flip-flop PUF [15], as well as for the delay-based
arbiter PUF [16]. We also demonstrate the gained insight offered by such
an accurate model, by analyzing the implications for key generation. This
clearly shows the limitations of the old fixed error rate model, and the
added value of designing a PUF system using the new model.

Overview. Sect. 2 introduces the newly proposed model, motivates the
assumed relations, and derives the hypothesized distribution functions.
The model’s accuracy is consequently validated in Sect. 3 by fitting it on
empirical statistics from actual silicon PUF measurements. The gained
insights of the new model and their consequences for PUFs and PUF-based
applications are discussed in Sect. 4. Finally, we identify the potential for
future work based on these findings and conclude in Sect. 5.



2 Model Description

2.1 Notation and Preliminaries

Without loss of generality we consider silicon PUFs with single-bit re-
sponses. For the sake of clarity, the presented model is introduced in terms
of memory-based PUFs, where each bit is produced by an individual (mem-
ory) PUF cell.1 However, as demonstrated, the applicability of the model
is certainly not limited to memory-based PUFs, but is also particularly
accurate in describing the reliability behavior of delay-based silicon PUFs.

Variable Notation. Most of the model’s variables are random in nature. We
distinguish between random values sampled once for a particular PUF cell
i (upon creation) and remain fixed for the cell’s entire lifetime, which are
denoted with subscript indexing (mi), and others which are resampled every
time the cell is evaluated, which are denoted with superscript indexing
(n(j)
i for evalutation j of cell i). Random variables in general are denoted

as capital literals, e.g. M is the random variable which is sampled to a
value mi for cell i, according to the distribution of M .

Distribution Functions. The distribution of a random variable X is char-
acterized by its probability density function (pdfX (x)) and/or its cumu-
lative distribution function (cdfX (x)). For discrete random variables, the
probability density function degenerates to a probability mass function
(pmfX (x)). Two basic distributions used in this work are the (stan-
dard) normal distribution (pdfX (x) = ϕ (x) and cdfX (x) = Φ (x)) and
the binomial distribution (pmfX (x) = fbino (x;n, p) and cdfX (x) =
Fbino (x;n, p)). We refer to App. A for details on these distributions.

2.2 The “Old” Model: PUF Response with Fixed Error Rate

We first briefly discuss the probabilistic model which is thus far used in
the majority of related literature (e.g. in [2,5,6,7,8,9]) for assessing the
reliability of PUFs and their applications.

Rationale. The foundation of the old model is the assumption that all
cells of a PUF are homogeneous, i.e. every cell in the PUF is equally likely
to produce an error at any time. This means the reliability behavior of
the PUF as a whole is described by a single fixed parameter: the (bit)

1We refer to the literature on memory-based PUFs and silicon PUFs in general for
more details on their operation and implementation. See e.g. [17] for an overview.



error rate (pe). This is the probability that any evaluation of any cell
differs from its enrolled response, and is assumed equal to the average-case
behavior averaged over many cells.

Limitations. Though convenient to use, this model’s limitations are evident
when looking at experimental PUF results. A typical PUF instantiation
exhibits unstable and stable cells, i.e. some cells are more likely to produce
an error while other cells are hardly ever wrong. This behavior is not
captured by the old model which treats every cell in the same way. However,
as shown in Sect. 4, it is wise to take this observation into account when
designing PUF-based applications. The main motivation behind the newly
introduced model is to accurately capture this cell-specific behavior.

2.3 The “New” Model: Cell-Specific Error-Probabilities
In line with the experimental observation that some PUF cells are more
error-prone than others, the foundation of the new model lies in the
assumed cell heterogenity, i.c. every cell in a PUF has an individual error-
probability. An early form of this basic idea was introduced in [13] and
serves as a starting point for the new model presented here.

Hidden Variable Model. The implied approach of [13], which we make
explicit, is that of a hidden variable model. Basically it is assumed that the
observable variables of a PUF cell, which describe its observable behav-
ior, are governed by underlying hidden variables. By assuming plausible
distributions for the hidden variables, the resulting distributions of the
observable variables are derived and validated against experimental data.

The Observable Variables describe the probabilistic behavior of an evalu-
ation (j) of a PUF cell i to a response bit value r(j)

i ∈ {0, 1} (a random
sampling of Ri):
– The One-Probability (pi) of a cell i is the probability that it returns ‘1’

upon a random evaluation: pi
def= Pr (Ri = 1). The one-probability is

itself a random variable P randomly sampled to a value pi ∈ (0, 1) for
a cell i.

– The Error-Probability (pe,i) of a cell i is the probability that a random
evalutation differs from an earlier recorded evaluation of that cell during
an enrollment phase2: pe,i

def= Pr
(
Ri 6= renroll

i

)
. The error-probability

is itself a random variable Pe randomly sampled to a value pe,i ∈ (0, 1).
2In [13], error-probability is defined with respect to a cell’s most-likely outcome

which is not representative for the realistic use of a PUF. Therefore, we consider a



The Hidden Variables are abstractions of underlying physical (electrical)
processes in a silicon PUF cell circuit. We do not consider low-level physical
details explicitly to avoid complex simulations and to maintain a generic
model. The used hidden variables are regarded as generic and approximated
lumped versions of underlying measurable physical quantities:

– The Process Variable (mi) quantifies the accumulated effect of process
variations on a cell’s internals, introduced during manufacturing. This
is a random variable (M), sampled at a cell’s creation time, according
to a distribution determined by the manufacturing process.

– The Noise Variable (n(j)
i ) quantifies the accumulated effect of random

noise on a cell’s internals during evaluation. This is a random vari-
able (Ni), resampled for every evaluation of the cell, according to a
distribution determined by the cell’s susceptibility to noise.

The Model Relation is the fundamental connection between hidden and
observable variables from which all further conclusions are derived:

r
(j)
i =

{
0 , if mi + n

(j)
i ≤ t ,

1 , if mi + n
(j)
i > t .

(1)

The implied assumptions of this relation are: i) that the hidden variables are
additive,3 and ii) that the evaluation outcome is the result of a comparison
with a constant threshold parameter t. The relation for the one-probability
is directly derived from (1) as: pi = Pr (mi +Ni > t) = 1−cdfNi (t−mi).

Distributions of the New Model. Since both hidden variables are
considered lumped physical quantities, a normal distribution is a motivated
assumption for both: M ∼ N (µM , σ2

M ), and Ni ∼ N (0, σ2
N). For ease

of notation, the parameters λ1 = σN/σM , and λ2 = (t− µM )/σM are used.
Based on these assumed distributions, the resulting observable variable
distributions are derived by employing the model relation as expressed in
(1). The one-probability distribution was already derived in [13]:4

cdfP (x) = Φ
(
λ1Φ

−1 (x) + λ2
)
. (2)

random enrollment instead: renroll
i is randomly sampled according to the one-probability

pi, and can (coincidentally) be an unlikely outcome for the considered cell
3This is intuitively justified by considering that the hidden variables are of an

electrical nature, i.e. voltages or currents. Additivity then follows from Kirchoff’s laws.
4Since P and Pe represent probabilities, cdfP (x) and cdfPe (x) are only defined for

x ∈ (0, 1).



The detailed derivation of the new error-probability distribution is pre-
sented in App. B.1 and results in:5

cdfPe (x) = λ1 ·
∫ Φ−1(x)

−∞
Φ (−u) · (ϕ (λ1u+ λ2) + ϕ (λ1u− λ2)) du . (3)

2.4 Modeling Temperature Dependence

From many PUF experiments (e.g. in [18]) it is clear that the operating
conditions of a silicon PUF, such as temperature and voltage, have a
noticeable impact on response behavior. At increasingly different conditions
this even becomes the primary source of unreliability, much more so than
instantaneous random noise. To realistically describe a PUF cell’s error-
behavior we incorporate these effects in the new model. This is done for
temperature, which typically has the largest impact on PUF reliability [18].6

Hidden Variable Model: Temperature Extension. The basic hid-
den variable model from Sect. 2.3 is extended with a new hidden vari-
able quantifying a cell’s sensitivity to temperature: the temperature
dependence (di). Since different cells react differently to temperature
changes, this is a cell-specific value randomly sampled at manufactur-
ing time. The observable variables are straightforwardly extended to ex-
press temperature dependence: pi(T ) = Pr (Ri(T ) = 1) and pe,i(T ;Tref) =
Pr
(
Ri(T ) 6= renroll

i (Tref)
)
. Note that error-probability depends on two

temperatures, at enrollment (Tref) and at reconstruction (T ).

The Temperature Model Relation extends the additive threshold relation
of the new model as given by (1) with a temperature dependent term.
This relation assumes a linear dependence on the (absolute) temperature
with a cell-dependent sensitivity quantified by di:

r
(j)
i (T ) =

{
0 , if mi + n

(j)
i + di · T ≤ t ,

1 , if mi + n
(j)
i + di · T > t .

(4)

Distribution of the Temperature Model. For the temperature de-
pendence variable we also assume a normal distribution: D ∼ N (0, σ2

D). A

5This and following integral expressions are evaluated using numerical methods.
6Other conditions can be equivalently modelled but are omitted due to lack of space.



third model parameter is introduced as θ = σN/σD. Following the tempera-
ture model relation expressed by (4), the distribution of the temperature-
dependent error-probabilities becomes:

cdfPe(T ;Tref) (x) = λ1θ

|∆T |
·
∫ Φ−1(x)

−∞

∫ +∞

−∞

[
Φ (−u)ϕ

(
θ v−u|∆T |

)
+

Φ (u)ϕ
(
θ v+u
|∆T |

) ]
· ϕ (λ1u+ λ2) dudv . (5)

The complete derivation is given in App. B.2. We introduced∆T = T−Tref,
and (5) is only defined for ∆T 6= 0. In case T = Tref, the limiting case of
(5) for ∆T → 0 reverts to (3).

3 Experimental Validation

We assess the validity of the assumptions made in Sect. 2 by fitting the pre-
dicted error-probability distribution to empirically observed statistics. For
this purpose we use the extensive experimental PUF data set originating
from the UNIQUE project [19], of which the initial analysis was presented
in [18,20]. This data set was acquired from 192 ASICs manufactured in
65nm CMOS, each implementing six silicon PUF types. We applied our
model in particular to the SRAM, D flip-flop, buskeeper and arbiter PUFs.

3.1 From Error-Probability to Error-Count

The error-probability of a particular PUF cell can be estimated by counting
the number of errors in a number of cell evaluations and dividing it by
that number. However, since the majority of cells typically has an error-
probability very close to 0, this estimate is rather inaccurate when the
number of evaluations is limited. E.g., based on 100 measurements of cell i
which are all error-free, it is impossible to differentiate between pe,i = 10−3

or pe,i = 10−6 or even smaller. This inaccuracy hampers an accurate fit
of the model, especially in the distribution tails (close to 0 and 1) which
happen to be the most interesting parts. To overcome this problem we
introduce a variable closely related to the error-probability but directly
observable in experimental data without estimation accuracy problems:
the error-count s(n)

e,i is the number of evaluations in n measurements of cell
i which differ from an enrollment response bit for that cell. By consequence,
the value of s(n)

e,i is also a random value sampled (at a given temperature
T ), according to the discrete distribution characterized by:

pmf
S

(n)
e (T ;Tref)

(x) =
∫ 1

0
fbino (x;n, u) · pdfPe(T ;Tref) (u) du . (6)
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Fig. 1. Fit of pmf
S

(59)
e

(x) on empirical SRAM PUF data at 25◦C.

In this section, we focus on fitting this distribution to the error statistics of
the experimental PUF data. The expression for pdfPe(T ;Tref) (u) is obtained
by differentiating (3) (if T = Tref) or (5) (if T 6= Tref) and is listed for
completeness in App. B.2.

3.2 Fitting the Error-Count Distribution

Fitting (λ1, λ2) at Tref = 25◦C. The first experimental data set we
use for fitting the parameters (λ1, λ2) consists of 60 evaluations of 65,536
cells from 768 identical but distinct SRAM PUF instantiations at a fixed
temperature of Tref = 25◦C.7 This totals to 768 × 65,536 = 50,331,648
distinct but identically implemented SRAM PUF cells all evaluated 60
times. We randomly pick one enrollment response and 59 reconstruction
evaluations from which we calculate the error-count s(59)

e,i for each PUF
cell i with respect to its enrollment value. From these 50,331,648 randomly
sampled error-count values the empirical distribution of S(59)

e is calculated.
If the model from Sect. 2.3 is accurate, then the hypothesized distribution
of S(59)

e as characterized by (6) should closely fit the empirical histogram.
We perform a non-linear optimization over (λ1, λ2) using the Levenberg-
Marquardt algorithm to minimize the mean squared error (MSE) between
the empirical and hypothesized probability mass functions. The result is
shown in Fig. 1 and shows that the function from (6) yields a strikingly
accurate fit. The closest fit was found for (λ1 = 0.1213 , λ2 = 0.0210)
with an MSE of merely 4.467 · 10−9.

7The 768 SRAM PUFs are implemented on 192 ASICs, with 4 instances per chip.



Table 1. Fit results of pmf
S

(n)
e

(x) on empirical data of different PUF types at 25◦C.

PUF Type Silicon PUF MSE of fit λ1 λ2

Memory-based SRAM PUF 4.467 · 10−9 0.1213 0.0210
Memory-based Buskeeper PUF 5.760 · 10−10 0.0929 0.0340
Memory-based D Flip-flop PUF 1.150 · 10−9 0.0812 0.0381
Delay-based Arbiter PUF 1.843 · 10−9 0.0676 0.0461

To demonstrate the generic nature of the proposed model we also apply
it to other silicon PUF types. We considered the experimental data of 60
evaluations of 8,192 cells from 384 instantiations, for each of the buskeeper,
the D flip-flop and the arbiter PUF.8 All fitting results are summarized
in Table 1 and show that the best fit for each of these alternative PUF
types is at least as accurate as that for the SRAM PUF. Remarkably, the
model succeeds in accurately predicting the reliability distributions for
both memory-based as well as delay-based PUFs.

Fitting θ for the SRAM PUF at T = [−40◦C, . . . ,+85◦C]. To
validate the temperature dependence of the model as presented in Sect. 2.4,
we use an experimental data set obtained from 65,536 cells from a limited
set of 20 identical but distinct SRAM PUF instantiations, evaluated 100
times at thirteen temperatures between −40◦C and 85◦C. This gives a
total set of 20× 65,536 = 1,310,720 cells, for each of which we calculate
the error count s(100)

e,i (T ;Tref) at every measured temperature with respect
to a randomly selected enrollment response at Tref = 25◦C. The accuracy
of the temperature model is tested by fitting the hypothesized distribution
of S(100)

e (T ; 25◦C), as characterized by (6), to the empirical distribution of
these 1,310,720 samples at every measured T 6= Tref. We use the estimated
parameter values for (λ1, λ2) from the previous experiment, and perform
an optimization over the remaining parameter θ to minimize the average
MSE between the empirical and hypothesized probability mass functions
over all T . The results are shown in Fig. 2 and demonstrate an accurate fit
at every considered temperature. A minimal average MSE of 1.643 · 10−6

over all temperatures is obtained for θ = 45.0, with the largest deviation
at the extreme temperature of −40◦C (MSE of 5.208 · 10−6). Given the
single parameter linear temperature dependence assumed by the model,
as given by (4), the fitted distributions are remarkably accurate.

8For the arbiter PUF, a “cell” refers to an evaluation with a random challenge.



0 20 40 60 80 100
10

−4

10
−3

10
−2

10
−1

10
0

↑  Error−count @ T=−40oC: x

 p
m

f S
(1

00
) (T

;T
re

f)(x
)

 

 

Empirical
Model Fit (θ=45.0)
MSE=5.208e−006

0 20 40 60 80 100
10

−4

10
−3

10
−2

10
−1

10
0

↑  Error−count @ T=−25oC: x

 

 

Empirical
Model Fit (θ=45.0)
MSE=3.964e−006

0 20 40 60 80 100
10

−4

10
−3

10
−2

10
−1

10
0

↑  Error−count @ T=−15oC: x

 

 

Empirical
Model Fit (θ=45.0)
MSE=2.823e−006

0 20 40 60 80 100
10

−4

10
−3

10
−2

10
−1

10
0

↑  Error−count @ T=−5oC: x

 p
m

f S
(1

00
) (T

;T
re

f)(x
)

 

 

Empirical
Model Fit (θ=45.0)
MSE=1.779e−006

0 20 40 60 80 100
10

−4

10
−3

10
−2

10
−1

10
0

↑  Error−count @ T=5oC: x

 

 

Empirical
Model Fit (θ=45.0)
MSE=8.657e−007

0 20 40 60 80 100
10

−4

10
−3

10
−2

10
−1

10
0

↑  Error−count @ T=15oC: x

 

 

Empirical
Model Fit (θ=45.0)
MSE=2.802e−007

0 20 40 60 80 100
10

−4

10
−3

10
−2

10
−1

10
0

↑  Error−count @ T=35oC: x

 p
m

f S
(1

00
) (T

;T
re

f)(x
)

 

 

Empirical
Model Fit (θ=45.0)
MSE=7.474e−008

0 20 40 60 80 100
10

−4

10
−3

10
−2

10
−1

10
0

↑  Error−count @ T=45oC: x

 

 

Empirical
Model Fit (θ=45.0)
MSE=2.532e−007

0 20 40 60 80 100
10

−4

10
−3

10
−2

10
−1

10
0

↑  Error−count @ T=55oC: x

 

 

Empirical
Model Fit (θ=45.0)
MSE=4.437e−007

0 20 40 60 80 100
10

−4

10
−3

10
−2

10
−1

10
0

↑  Error−count @ T=65oC: x

 p
m

f S
(1

00
) (T

;T
re

f)(x
)

 

 

Empirical
Model Fit (θ=45.0)
MSE=3.100e−007

0 20 40 60 80 100
10

−4

10
−3

10
−2

10
−1

10
0

↑  Error−count @ T=75oC: x

 

 

Empirical
Model Fit (θ=45.0)
MSE=3.388e−008

0 20 40 60 80 100
10

−4

10
−3

10
−2

10
−1

10
0

↑  Error−count @ T=85oC: x

 

 

Empirical
Model Fit (θ=45.0)
MSE=1.893e−007

Fig. 2. Fit of pmf
S

(100)
e (T ;Tref=25◦C) (x) on empirical SRAM PUF data for different T .

4 Interpretation and Discussion

We are now able to quantify the consequences of the heterogenity of
individual PUF cells. We first interpret the reliability distribution directly
in Sect. 4.1 and study the effect on PUF-based key generation in Sect. 4.2.

4.1 Interpretation of the New Model Distributions

We consider the experimentally studied SRAM PUF from Sect. 3, with
fitted model parameters: (λ1 = 0.1213, λ2 = 0.0210, θ = 45.0). The
error-probability distribution is analysed at the worst-case temperature
T = −40◦C with respect to enrollment at Tref = 25◦C. The cumulative
distribution function is plotted in Fig. 3. From this graph the heterogene
nature of the individual PUF cells is immediately clear. A remarkable
observation is that about 34% of the SRAM PUF cells have an error-
probability ≤ 10−15, i.e. in any practical setting they are always correct.
On the other hand, about 7% of the cells produce an error in more than
50% of their evaluations, and about 1% of the cells in more than 99%.9
Another remarkable observation is the discrepancy between the mean

9Cells with very high (> 50%) error-probabilities are caused by a cell coincidentally
assuming an unlikely value during enrollment, or alternatively because a cell’s prefered
value changes over the temperature shift between enrollment and reconstruction.
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error-probability, which is 7.70%, and the median, which is only in the
order of 10−8. The large majority of errors in a PUF response is hence
caused by a small minority of cells which are wrong very often. This is
exactly the kind of behavior which is oblivious in the fixed-error rate model
(Sect. 2.2) and motivated us to develop a more accurate model (Sect. 2.3).

4.2 Implications for PUF-based Key Generators

Due to their appealing security properties like intrinisic uniqueness and
physical unclonability, PUFs provide a strong physical foundation for secure
key storage. To turn a PUF response into a secure key, post-processing is
required by a key generator to boost the reliability and unpredictability
to the cryptographically required level. For this purpose, a typical PUF-
based key generator deploys a fuzzy extractor as introduced by [21], e.g.
as implemented by [6,22,9,8]. For the analysis presented here, it suffices to
consider a fuzzy extractor as a black box algorithm FE(n, t) which is able
to correct up to t bit errors in an n-bit PUF response. We refer to the
cited literature for in-depth details about a fuzzy extractor’s operation.

From PUF Cell Error-Probabilities to Key Failure Rate. A key
generation fails when the fuzzy extractor is unable to correct all the
PUF response bit errors that simultaneously occur in a single evaluation.
The key failure rate (pfail) is the probability of this happening: pfail =
Pr (# errors in n response bits > t), and should be very small for practical
applications (typically 10−6 or 10−9). With the fixed error-rate model
(Sect. 2.2), as used in all literature on PUF-based key generators up to
date, the number of errors in an n-bit response is binomially distributed.



This results in a fixed failure rate for every key generator instantiation:

(fixed error-rate) pfail(pe) = 1− Fbino (t;n, pe) . (7)

In the more accurate new model with random error-probabilities (Sect. 2.3),
the number of errors in an n-bit PUF response is no longer binomially dis-
tributed, but Poisson-binomially distributed [23].10 The Poisson-binomial
cumulative distribution function FPB (t; pn

e ) is evaluated from the list
of error-probabilities of n PUF cells: pn

e = (pe,1, pe,2, . . . , pe,n). The key
failure rate for FE(n, t) then becomes:

(random error-probabilities) pfail(pn
e ) = 1− FPB (t; pn

e ) . (8)

Since each of the elements of pn
e is a randomly sampled variable, the

resulting key failure rate will not be a fixed value for every generator, as in
the old model, but also a randomly sampled value for each PUF instance.

The Key Failure Rate Distribution. We consider a key generator
based on the SRAM PUF analysed in Sect. 4.1 (with worst-case reliability
at −40◦C) and a concatenated fuzzy extractor FE(212, 11) ◦ FE(5, 2),11

which extracts a key with 128-bit entropy from 1,060 cells, with pfail ≤ 10−9

(on average).
Under the old fixed error-rate model of Sect. 2.2, the constant error

rate is set equal to the mean error-probability over all cells: pe = 7.70%.
The achieved average key failure rate is calculated by applying (7) twice:

pfail = 1− Fbino (11; 212, 1− Fbino (2; 5, 0.0770)) = 1.15 · 10−10 .

This key generator hence produces a 128-bit key with pfail = 1.15 ·10−10 ≤
10−9. However, due the used fixed-error model this only holds for the
average case key generator. No statements can be made about the distri-
bution of failure rates, e.g. it is unclear which fraction of key generators
actually reaches this average, or the required goal of 10−9. This is a serious
limitation which is solved by using the new reliability model.

The random distribution of key failure rates under the new model of
Sect. 2.3 is hard to treat analytically since it involves an n-dimensional
integration over the distribution of pn

e . However, we are able to efficiently
10Some details on this lesser known distribution are given in App. A.
11Concatenated fuzzy extractors are typically more efficient than single large fuzzy

extractors [6]. The second fuzzy extractor sees the failure rate of the output of the first
one as the error probability of its input symbols. For completeness, we mention the
error-correcting codes on which the considered fuzzy extractors are based: FE(5, 2) uses
the (5, 1)-repetition code and FE(212, 11) the (212, 128)-BCH code.
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PUF Cell Error Probability Distribution
Intermediate Failure Rate Distribution after FE(5,2)
Key Failure Rate Distribution after FE(5,2) → FE(212,11)

FE(5,2)

FE(212,11)

Average PUF error 
probability = 7.70%

Average key failure 
rate = 1.15⋅10−10 

Average intermediate
failure rate = 0.40% 

~ 13 in a million key generators 
have a failure rate > 10−6 

~ 0.16% of key generators have a
failure rate > 10−9 (outside spec)

99.5% of key generators have a 
failure rate ≤ average (overdimensioned)

Fig. 4. Plot of the failure rate distribution of a PUF-based key generator.

simulate a key generator by randomly picking n error-probabilities accord-
ing to (5) (using inverse transform sampling) and calculating pfail(pn

e ) with
(8). By repeating this, we get many random samples of pfail from which
its distribution is estimated. We performed a simulation over 50,000,000
key generators, sampling 1,060 random error probabilities for each one,
and calculating the resulting pfail by applying (8) twice. The resulting
simulated distribution is shown in Fig. 4, together with the initial PUF cell
error-probability distribution and the distribution of intermediate failure
rates after FE(5, 2) but before FE(212, 11).

Interpretation of the Key Failure Rate Distribution. It is clear
that the expected value of the derived key failure rate distribution under
the new model is equivalent to the fixed key failure rate predicted under
the old fixed error rate model. However, the failure rate distribution as
plotted in Fig. 4 provides much more insight, e.g. it indicates not only
the average failure rate but also the fraction of key generators actually
attaining this average. For the studied example, we see that 99.5% of the
generators operate above average, and even up to 99.84% have a failure
rate within the specified goal of pfail ≤ 10−9. On the other hand, this means
that a very small but non-negligible fraction of 0.16% of the generators
does not meet the specification. This is potentially important information
for an application which is oblivious in the old fixed error rate model!

The small fraction of generators outside spec is not necessarily prob-
lematic. A large portion of that 0.16% still has a very small failure rate,
only not as small as 10−9. Only 13 in a million generators have pfail > 10−6,
and less than 1 in 10 million generators have pfail > 10−4. Whether this
is a problem depends on the envisioned application, such as the num-



ber of devices in the field and the acceptability of a potential failure. In
fact, by taking these considerations into account the system specifications
might even be relaxed, which will result in a more efficient design. E.g., a
PUF-based key generator for a public transport ticketing system, with a
huge number of deployed devices but a low criticality of failure, should be
approached very differently than that for a life-supporting medical implant,
with a relatively small number of devices in the field but an extremely
high criticality of failure. The main advantage of the new model proposed
in this work is exactly that it allows to study this tradeoff, whereas in the
old model one is not aware of it.

5 Conclusion and Future Work

We introduced a more realistic new reliability model for silicon PUFs which
no longer assumes a single fixed error rate as before but considers ran-
domly distributed cell error-probalities. An hypothetical error-probability
distribution was derived based on plausible assumptions, including the
effects of environmental factors like temperature. Experimental validations
based on a substantial set of silicon PUF measurement data demonstrate a
strikingly accurate fit of the predicted distributions on empirical statistics.
This is a strong indication of the correctness and generic nature of the
newly proposed model. An important implication of the use of this model is
the ability to study the full failure distribution of a PUF-based application,
whereas the old fixed error rate model only displays average case behavior.
This introduces a new dimension in the design of PUF systems, allowing
more focused specifications and better adapted solutions.

The ability to accurately describe the probabilistic reliability behavior
of a silicon PUF spawns various seeds for future research. An obvious
continuation of this work is the inclusion of more external parameters and
conditions, besides temperature, in the model and the distributions; e.g.
supply voltage variation, silicon device aging effects and technology node
dependence. A further experimental validation on alternative silicon PUF
technologies and under varying conditions will strengthen the applicability
of the presented model. The offered possibility to realistically simulate
PUF reliability behavior, as demonstrated in Sect. 4.2, could be of great
interest in the development of PUF-based applications, e.g. when no real
PUF measurements are available. Finally, an interesting parallel research
track is the analysis of unpredictability (entropy) of PUF responses using
the same methods as presented in this work.
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A Basic Probability Distributions

The Binomial Distribution is the discrete distribution of the number of
successes in n Bernoulli trials with constant success probability p. Its
distribution functions are given by:
fbino (x;n, p) =

(n
x

)
px(1− p)n−x , and Fbino (x;n, p) =

∑bxc
i=0

(n
i

)
pi(1− p)n−i .

The Standard Normal Distribution is the normal distribution with zero
mean and unit variance, denoted as: N (0, 1). Any normal distribution can
be expressed as a function of the standard normal: if X ∼ N (µ, σ2), then
X−µ
σ ∼ N (0, 1). Its distribution functions are given by:

ϕ (x) = (2π)−
1
2 e−

x2

2 , and Φ (x) = 1
2
(
1 + erf

(
x√
2

))
.

The Poisson-Binomial Distribution is the discrete distribution of the
number of successes in n Bernoulli trials when the success probability
is no longer constant, but different for every trial. The probability mass
function and cumulative distribution function of the Poisson-binomial
distribution can be efficiently calculated as shown in [23]:

fPB (x; pn
e ) = 1

n+1

n∑
i=0

C−i·x
n∏
k=1

(
pe,kC

i + (1− pe,k)
)
, with C = e

j2π
n+1 ,

FPB (x; pn
e ) = x+1

n+1 + 1
n+1

n∑
i=1

1−C−i·(x+1)

1−C−i

n∏
k=1

(
pe,kC

i + (1− pe,k)
)
.

https://www.unique-project.eu/


B Derivation of New Model Distributions12

All derived distributions concern random variables representing probabili-
ties. This entails that all derived distribution functions are only defined
on (0, 1) and make no sense outside this interval. Most of the derived
distributions approach infinity for x→ 0+ and x→ 1−, therefore, we only
consider the open interval (0, 1). This implies that, e.g. an error-probability
cannot be a hard 0 (absolutely never wrong) or a hard 1 (absolutely always
wrong), though it can be arbitrarily close to 0 or 1.

B.1 Fixed Temperature Model

The One-Probability Distribution is derived by considering the defi-
nition of its cumulative distribution function:

cdfP (x) def= Pr (P ≤ x) = Φ
(
λ1Φ

−1 (x) + λ2
)
,

pdfP (x) def= d cdfP (x)
dx = λ1ϕ(λ1Φ−1(x)+λ2)

ϕ(Φ−1(x)) ,

by substituting the assumed normal distributions for M and Ni and using
the short-hand parameters λ1 = σN/σM , and λ2 = (t− µM )/σM .

The Error-Probability Distribution is derived by first considering
the conditional probability density function of the error-probability with
respect to the one-probability. Note that the error-probability of a cell i is
only completely determined at enrollment time, i.e. pe,i = pi if renroll

i = 0
and pe,i = 1− pi if renroll

i = 1. The conditional distribution is derived as:

pdfPe|P=pi (x) =


pi , for x = 1− pi ,
1− pi , for x = pi ,
0 , for all other x .

=


1− x , for pi = 1− x ,
1− x , for pi = x ,
0 , for all other pi .

The unconditional probability functions of Pe then follow as:

pdfPe (x) = λ1(1− x)ϕ(λ1Φ−1(x)+λ2)+ϕ(λ1Φ−1(x)−λ2)
ϕ(Φ−1(x)) ,

cdfPe (x) = λ1 ·
∫ Φ−1(x)

−∞
Φ (−u) · (ϕ (λ1u+ λ2) + ϕ (λ1u− λ2)) du .

12In order to adhere to the page limit, the substeps in the following derivations are
very limited. For a more detailed version of these derivations we refer to the full version
of this work to appear on the Cryptology ePrint Archive (http://eprint.iacr.org/).



B.2 Model with Temperature Sensitivity

Conditional One-Probability Distribution. The main goal of the
temperature extension of the basic model is to describe the evolution of
a PUF cell’s behavior over changing temperature, i.e. given a reference
behavior what will be its behavior when the temperature changes. We
first introduce a conditional variant of the one-probability to describe this,
and derive the relation of this conditional one-probability to the hidden
variables following from the temperature model relation given by (4).

pi(T |Tref)
def= Pr (Ri(T ) = 1|pi(Tref)) = Φ

(
Φ−1 (pi(Tref)) + di ·∆T

σN

)
,

with ∆T = T − Tref and using the normal distribution assumption for
Ni. The distribution of the conditional one-probabilities follows from
considering the definition of their cumulative distribution function:

cdfP (T |Tref) (x) def= Pr (P (T |Tref) ≤ x) = Φ
(
θ · ∆Φ

−1(x)
|∆T |

)
,

pdfP (T |Tref) (x) =
d cdfP (T |Tref)(x)

dx = θ
|∆T | ·

ϕ

(
θ·∆Φ

−1(x)
|∆T |

)
ϕ(Φ−1(x)) .

with ∆Φ−1 (x) = Φ−1 (x) − Φ−1 (pi(Tref)) and after filling in the normal
distribution assumption for D and using the short-hand notation θ = σN

σD
.

Error-Probability Distribution. We first express the conditional dis-
tribution of the error-probability conditioned on a known value for the one-
probability pi(Tref), and a known value for the conditional one-probability
pi(T |Tref):

Pr (Pe(T ;Tref) = x|P (T |Tref) = y, P (Tref) = pi,ref) =


pi,ref , for x = 1− y ,
1− pi,ref , for x = y ,
0 , for all other x .

We begin with removing the conditioning on pi(T |Tref):

Pr (Pe(T ;Tref) = x|P (Tref) = pi,ref) = (1− pi,ref) · pdfP (T |Tref) (x) + pi,ref · pdfP (T |Tref) (1− x) .

The unconditional distribution of Pe(T ;Tref) then follows as:

pdfPe(T ;Tref) (x) =
∫ 1

0

(
(1− pi,ref) · pdfP (T |Tref) (x) + pi,ref · pdfP (T |Tref) (1− x)

)
pdfP (pi,ref) dpi,ref ,

= λ1θ
|∆T |ϕ(Φ−1(x)) ·

∫+∞
−∞

[
Φ (−u)ϕ

(
θΦ
−1(x)−u
|∆T |

)
+ Φ (u)ϕ

(
θΦ
−1(x)+u
|∆T |

) ]
· ϕ (λ1u+ λ2) du .

cdfPe(T ;Tref) (x) = λ1θ
|∆T | ·

Φ−1(x)∫
−∞

+∞∫
−∞

[
Φ (−u)ϕ

(
θ v−u|∆T |

)
+ Φ (u)ϕ

(
θ v+u
|∆T |

) ]
· ϕ (λ1u+ λ2) du dv .

For ∆T → 0+ this reverts to the distribution functions for the basic fixed
temperature model as derived in App. B.1.
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