Creating High-Performance Cool Running Edge Nodes

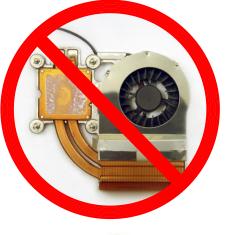
A Leading Provider of Smart, Connected and Secure Embedded Control Solutions

Agenda

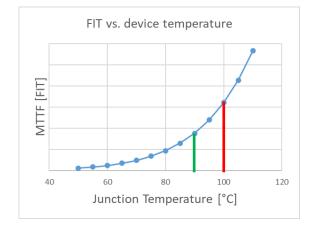
- System cost of power consumption in all applications
- Benefits of lower power consumption
- Example applications
- Demonstration

Why Power Consumption Matters

System Implications

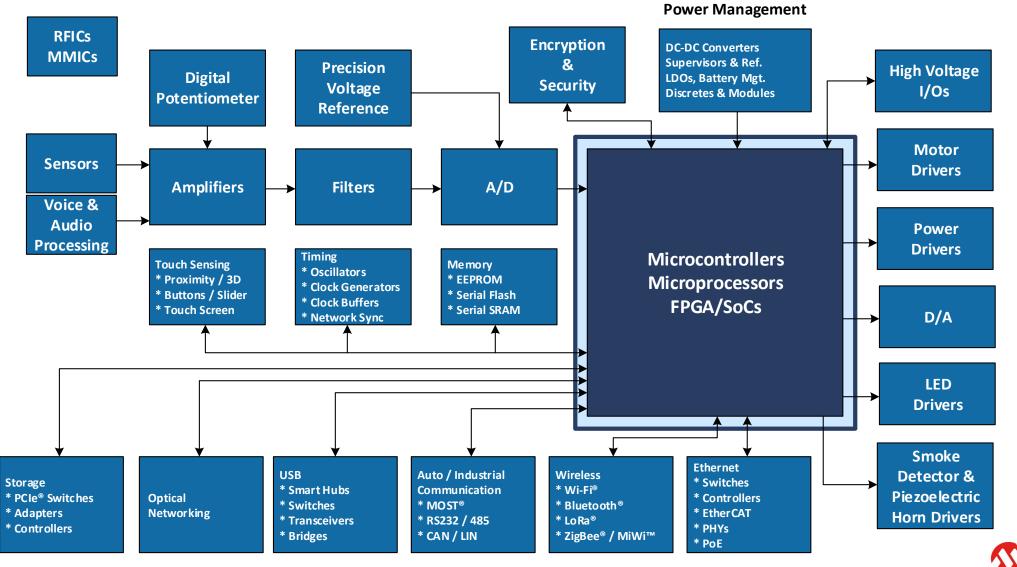

Why Power Consumption Matters Important for all Applications

- Power consumption is far beyond "battery-life"
 - Lower power = lower self heating
 - No heat sinks or fans
 - Avoids cost and components that can fail
 - Smaller physical system size and lower system cost
 - Longer device lifetime due to lower junction temperature
 - Longer mean time to failure (MTTF) = lower failure in time (FIT)-rate
 - More features on power budget
- Big 3
 - Reduce risk
 - Save money
 - Make money



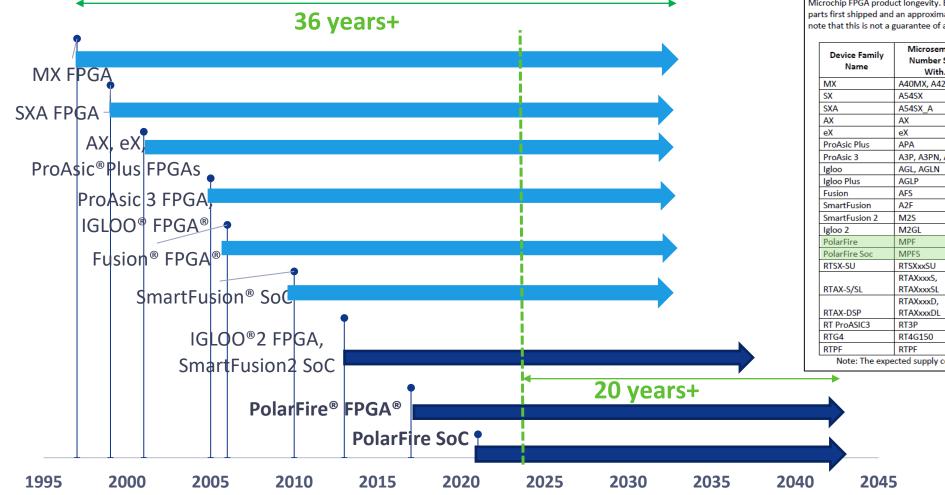
Reliability and Power Why Power Matters for Reliability

- Reliability cares about failure rates
 - Measured in Failure In Time (FIT)
 - FIT-rate is strongly dependent on temperature
 - Decreasing the device-temperature by 10°C approximately halves the FIT-rate
- Higher FIT in hardware = harder for safety certification



Providing Full System Solutions

Portfolio of Hardware, Software and Services



© 2023 Microchip Technology Inc. and its subsidiaries

CROCHIP

Microchip No Obsolescence Practice

Longevity of Supply

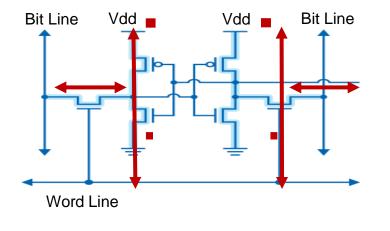
Note: Longevity timelines show historic and anticipated years of support. Some external factors could impact the timelines.

March 10, 2023

Dear Valued Customer,

Thank you for your continued interest in Microchip products. The purpose of this letter is to address Microchip FPGA product longevity. Below you will find a matrix of device families with data on when parts first shipped and an approximate timeframe that we expect to have wafer availability; please note that this is not a guarantee of availability.

Device Family Name	Microsemi Part Number Starts With	Year First Shipped	Expected Availability from 2023
MX	A40MX, A42MX	1997	10 years
SX	A54SX	1999	5 years
SXA	A54SX_A	1999	10 years
AX	AX	2001	10 years
еX	eX	2001	10 years
ProAsic Plus	APA	2001	10 years
ProAsic 3	A3P, A3PN, A3PL	2005	10 years
Igloo	AGL, AGLN	2005	10 years
Igloo Plus	AGLP	2005	10 years
Fusion	AFS	2006	10 years
SmartFusion	A2F	2010	10 years
SmartFusion 2	M2S	2013	15 years
Igloo 2	M2GL	2013	15 years
PolarFire	MPF	2017	20 years
PolarFire Soc	MPFS	2021	20 years
RTSX-SU	RTSXxxSU	2004	10 years
RTAX-S/SL	RTAXxxxS, RTAXxxxSL	2004	15 years
RTAX-DSP	RTAXxxxD, RTAXxxxDL	2011	15 years
RT ProASIC3	RT3P	2010	15years
RTG4	RT4G150	2015	15 years
RTPF	RTPF	2022	20 years
Note: The exp	ected supply continuity	does not apply to EOL'	ed products.


Power Efficiency

Architecture and Technology Matter

Significantly Lower Power Consumption By Technology and by Design

SRAM Cell

SRAM:

- Must continually re-charge
- Substantial leakage per cell

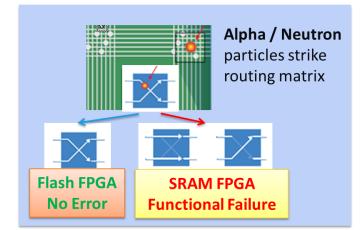
Features:

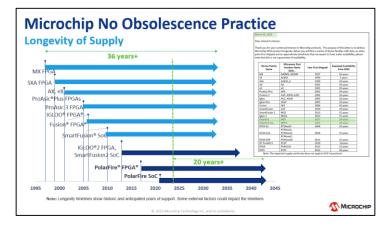
• Designed for HIGH-END market (and re-used for mid-range families)

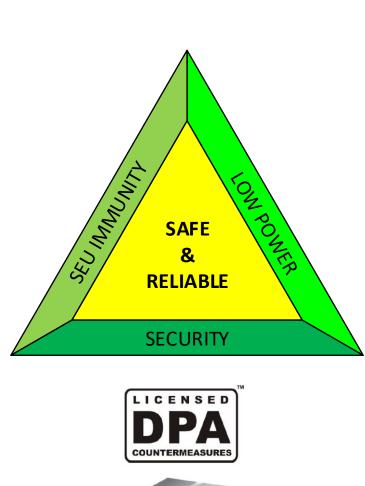
Non-Volatile Cell

Non-Volatile memory:

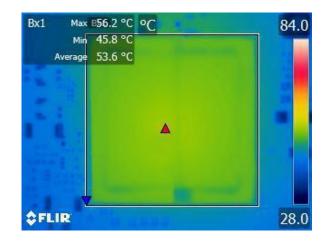
- Retains its state
- 1000x lower leakage per cell

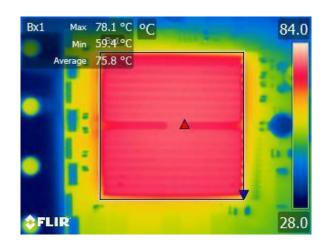

Features:

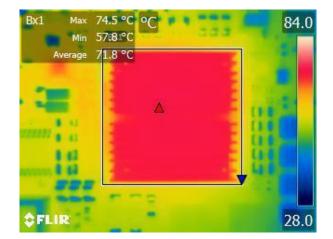

 Designed for LOW POWER (Transceivers, Microprocessors, etc.)


Total Power Savings of 30-50% vs SRAM FPGAs

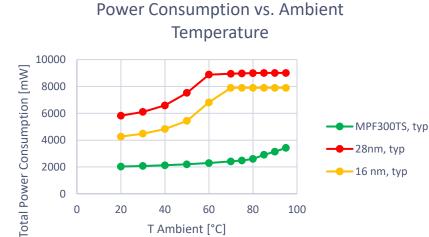
Industrial as Multi-Facetted Topic Microchip Key Items Support Industrial Applications

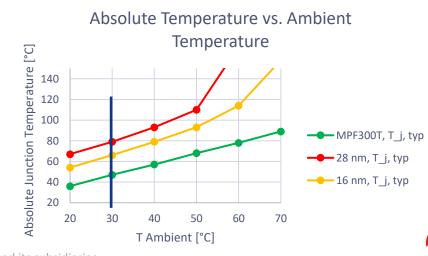





Significant Difference in Self-Heating

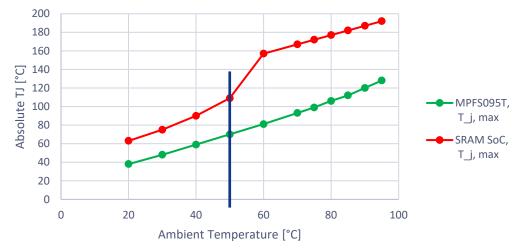
PolarFire[®] FPGA



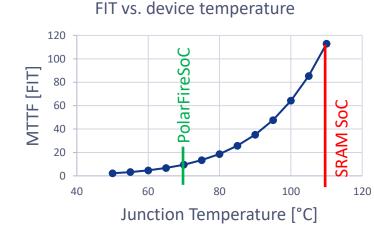

28 nm Competitor

16 nm Competitor

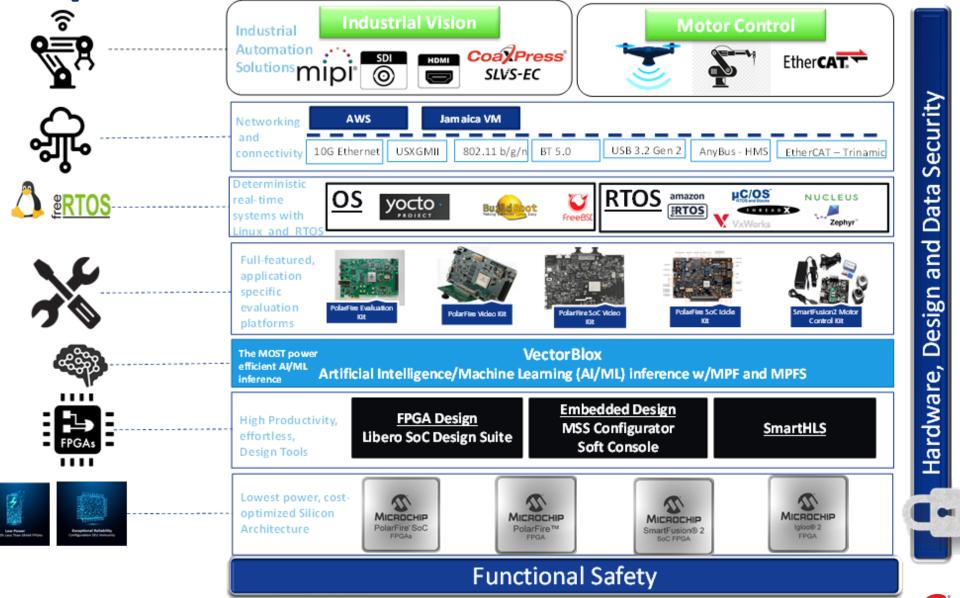
CROCHIP


© 2023 Microchip Technology Inc. and its subsidiaries

Aging Caused by Temperature


What are Implications for the System?

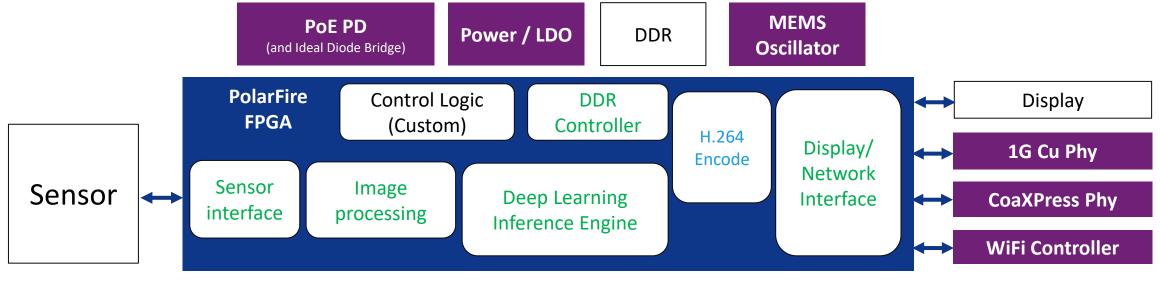
- Device aging
 - T ambient = 50°C
 - Junction temperature
 - PolarFire[®] SoC: 70°C
 - SRAM SoC: **109°C**



- Resulting MTTF (assumed on identical test-hours)
 - PolarFire SoC: ~10 FIT
 - SRAM SoC: ~107 FIT

Microchip Industrial Automation Stack

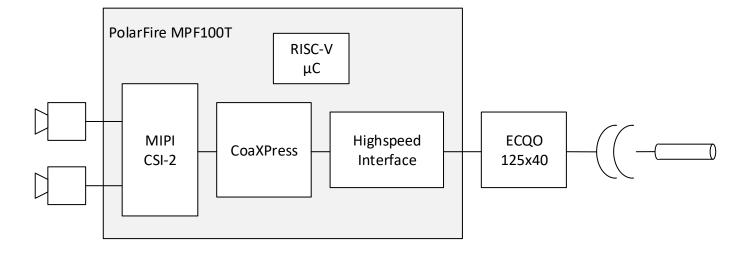
MICROCHIP

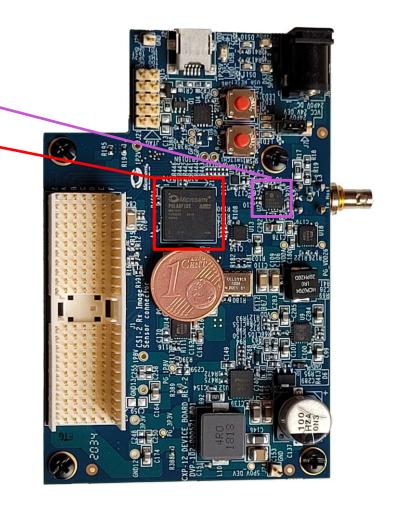

Example Applications

Key Element: Performance/Watt

High-Performance Industrial Camera

Optimizing for Performance/Watt




Requirement	Microchip benefit	
Small housing	Optimized layout	
MIPI CSI-2 4kx60 sensors	Native CSI-2 support	
Simple thermal system	Low static, optimized transceivers	
Connectivity	Total System Solution	

Connected Vision – CoaXPress® VIDEO-DC-CXP

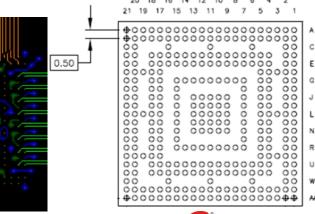
- EQCO125X40 Transmitter (4x4 mm²) -
- PolarFire[®] MPF100T-FCSG325 (11x11 mm²)
- MIPI CSI-2 to CoaXPress at 12.5 Gbps

Thermal Camera

Key Considerations

Requirement	Microchip Benefit
Handheld, battery-driven	Small power-consumption
Small housing	11x11mm ² no configuration-memory
No interference with sensor	Very small self-heating
Interfacing to thermal sensor	Native MIPI support

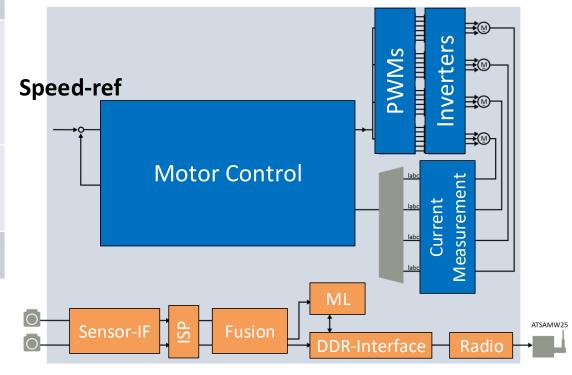




Measurement Equipment High-Temperature Environment

- Position measurement on motor-shafts
- Control of multiple high-power Silicon
 Carbide or IGBT power modules

Requirement	Microchip benefit
Mounting in hot environment (95°C)	Small static power
Space constrained	Small packages
Low-cost PCB	Simple PCB-routing
High reliability	SEU immunity



Professional Drones Flying Connected Sensors

Requirement	Microchip benefit
Long flying time	Small power-consumption
Silent flying Accurate control	 FOC motor-control IP Deterministic fast loop- timing
Multiple sensors	Flexibility of FPGA, native MIPI CSI-2 support
Connectivity	Microchip portfolio

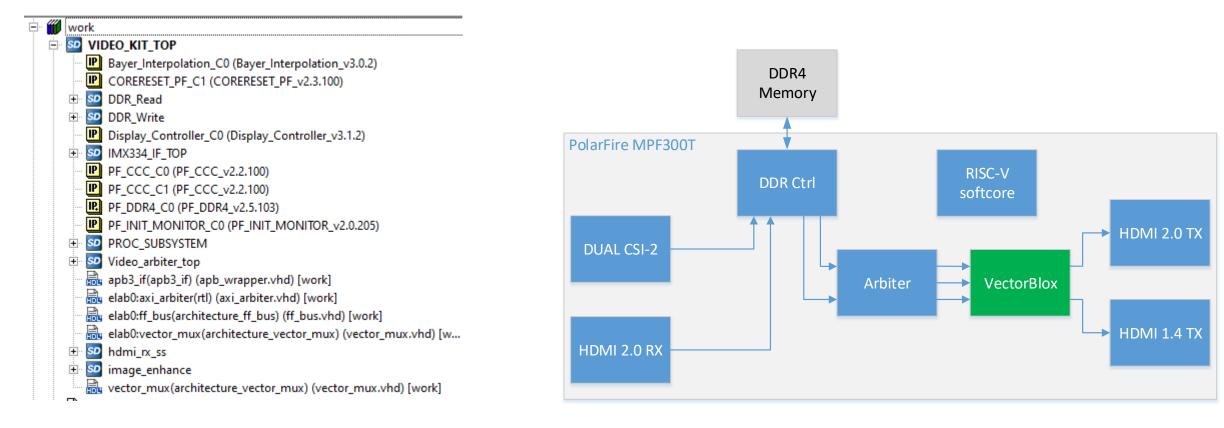
Real world example

PolarFire Video Kit and Machine Learning

Design Example

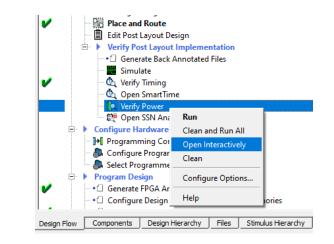
Person Recognition on MPF300-VIDEO-KIT

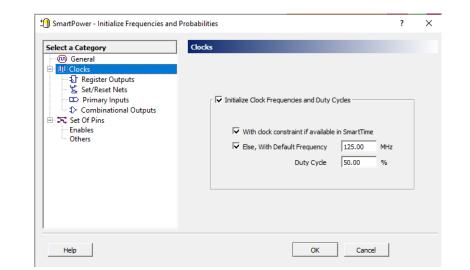
• Design-Resources, Face Recognition:


- Design: https://bit.ly/MCHP_VBX_13
- SDK: <u>https://github.com/Microchip-Vectorblox</u>
- HDMI in/out

Block Diagram Face Detection MPF300-VIDEO-KIT

Libero SoC example design based on DG0849

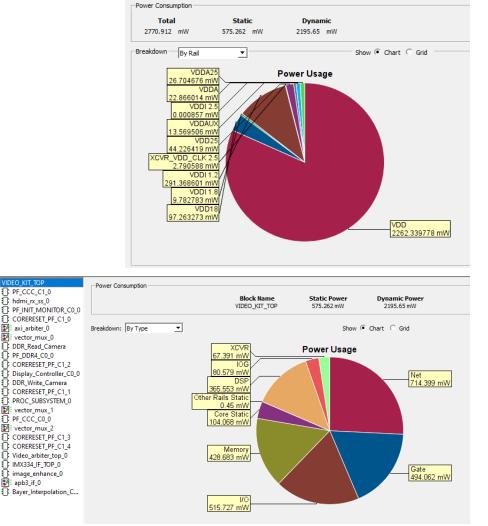

Power Analysis of Design SmartPower on Implemented Design


SmartPower

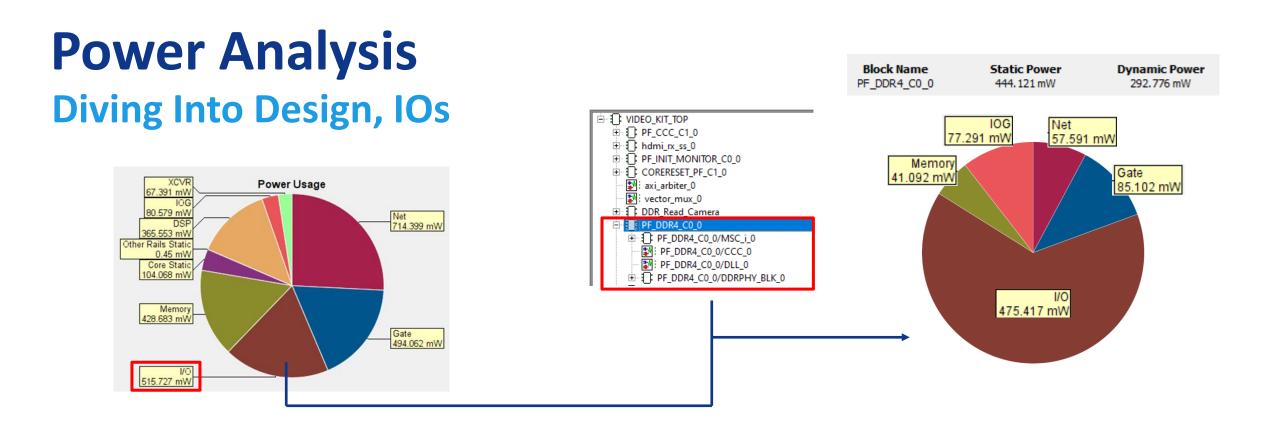
- Run on implemented design
- Allows accurate power-analysis on full design and design-blocks

Toggle-Rates influencing power

- Vector-less propagation
- Based on netlist simulation
- Manually

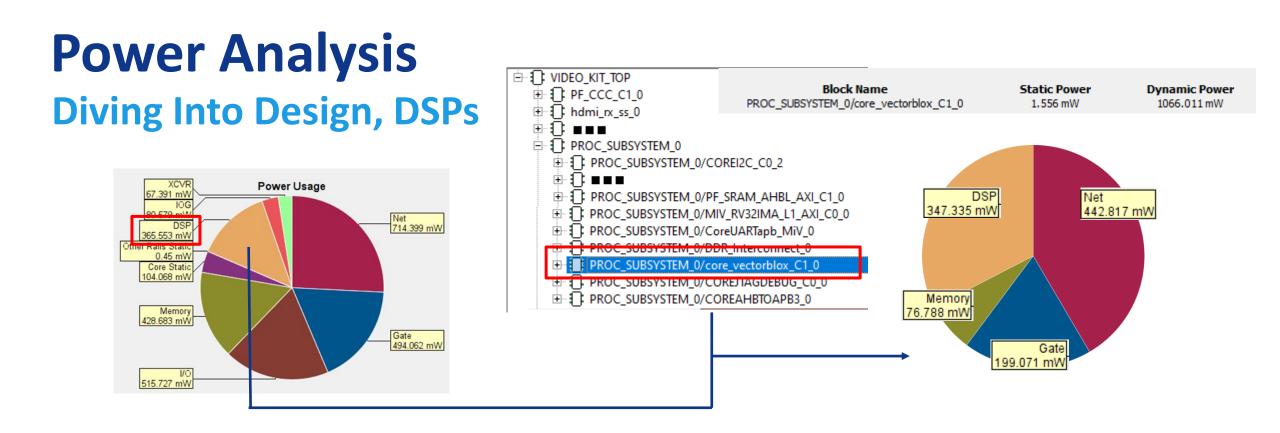


Power Analysis


SmartPower for Detailed Block Analysis

- Summary, by rail
 - Dimensioning of power supplies

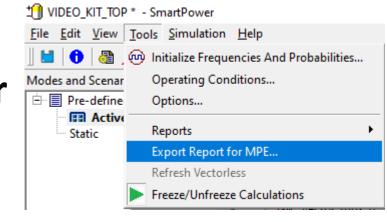
- Hierarchical Analysis
 - Where is power consumed
 - What does consume the power



- Breakdown based on design-hierarchy
- Allows analysis on potential power-savings
- DDR-memory is costly on power

- VectorBlox Machine Learning IP highest contributor to power consumption
- 1066 mW for Machine Learning IP => Low Power Machine Learning

Environmental What-If Excel-based Power Estimator


 Export from SmartPower to Microchip Power Estimator (MPE)

Import into MPE

bit.ly/MCHP_MPE

 Allows analysis for device and environment changes

	С	D	E F G	н		I	J	K L
1			Micr	ochip Power	Estimator (MPE) -	v2021.3	
2				PolarFire a	nd PolarFir	e SoC		
4 5 6	Import Initializ	e Power Estimator	Manage IP	Create Snapshot	Reset to Defau	lts [Export Report	Import XPE File
7	Project							

Thermal Inputs				
Calculation mode	Estimated Ti			
Ambient Temperature Ta (°C)	25.00			
Theta JA	Estimated Theta JA			
Effective ⊖ _{JA} (°C/W)	8.00			
Heat Sink	None			
Air Flow	Still Air			
Custom ⊖ _{sA} (°C/W)				
Board Thermal Model	JEDEC (2s2p)			

Power Summa	ary	
	Summary	1
Total Power (W)		2.593
> Device Stati	= (W)	0.160
→ Core Dynam	ic (W)	1.810
$\longrightarrow IO(W)$		0.563
Transceiver (W)		0.059
Junction Temperature	Tj(°C)	45.75
Effective Theta JA(°C	W)	8.00
Thormal Morain	Maximum Ta(°C)	76.19
Thermal Margin	Maximum Power (W)	9.37

Design-Based What-If Low-Effort Power Estimation

Checking on return before redesign

- Toggle-rates
- Clock-rates
- IO-settings

	Name	Clock Frequency (MHz)	Number of DFF	Number of 4LUT	Design Complexity	Toggle Rate	Power (W)
	PROC_SUBSYSTEM_0/COREJTAGE	30.00		209	2.1	13.4%	
	PROC_SUBSYSTEM_0/COREJTAGE	30.00	337		1.5	12.4%	0.000
	PF_CCC_C0_0/PF_CCC_C0_0/pll_ins	137.50	10833		1.9	12.4%	0.021
	PF CCC C0 0/PF CCC C0 0/pll ins	275.00		27000	1.5	12.6%	0.069
Ti = 45.8°C	PF_CCC_C0_0/PF_CCC_C0_0/pll_ins	275.00	42196		1.5	12.4%	0.133
.)	IMX334_IF_TOP_0/PF_CCC_C2_0/PFU			2747	1.4	13.3%	0.003
	IMX334_IF_TOP_0/PF_CCC_C2_0/PFU	120.00	1466		2.2	12.4%	0.003

	Name	Clock Frequency (MHz)	Number of DFF	Number of 4LUT	Design Complexity	Toggle Rate	Power (W)
	PROC_SUBSYSTEM_0/COREJTAGEG	30.00		209	2.1	13.4%	0.000
	PROC_SUBSYSTEM_0/COREJTAGEG	30.00	337		1.5	12.4%	0.000
	PF_CCC_C0_0/PF_CCC_C0_0/pll_ins	137.50	10833		1.9	12.4%	0.021
	PF CCC C0 0/PF CCC C0 0/pll ins	275.00		27000	1.5	12.6%	0.069
Tj = 46.9°C	PF_CCC_C0_0/PF_CCC_C0_0/pll_ins	275.00	42196		1.5	25.0%	0.269
· j	IMX334_IF_TOP_0/PF_CCC_C2_0/PF)	120.00		2747	1.4	13.3%	0.003
	IMX334_IF_TOP_0/PF_CCC_C2_0/PF)	120.00	1466		2.2	12.4%	0.003

Comparing to other architectures Power Estimation Tools

- How do other architectures behave?
- Can I estimate without doing a large design-run?

Settings		Settings		Settings	
G	eneral		Device		Device
Family	PolarFire	Family		Family	+
Device	MPF300T	Device	ХС7К325Т	Device	XCKU5P
Package	FCG1152	Package	FBG900	Package	FFVA676
Range	Extended	Speed Grade	-2L	Speed Grade	-1
Core Voltage	1.0 V	Temp Grade	Extended	Temp Grade	Industrial
Process	Typical	Process	Typical	Process	Typical
Speed Grade	-1	Voltage ID Used		Voltage ID Used	
Data State	Production	Characterization	Production	Characterization	Production (± 15% acc

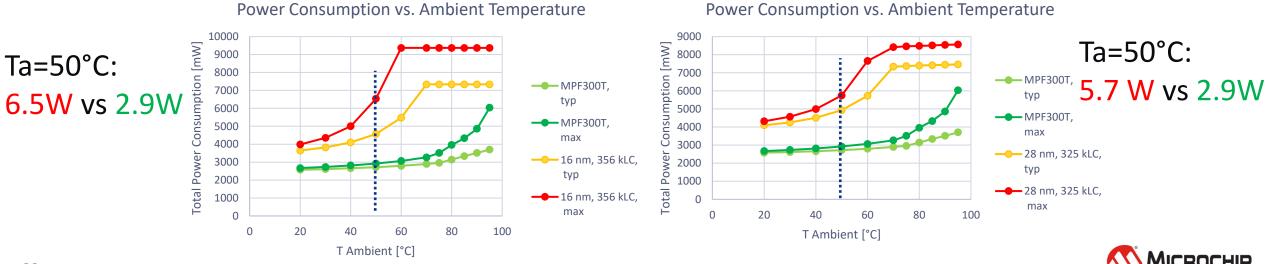
→ Power estimation tools are your friends

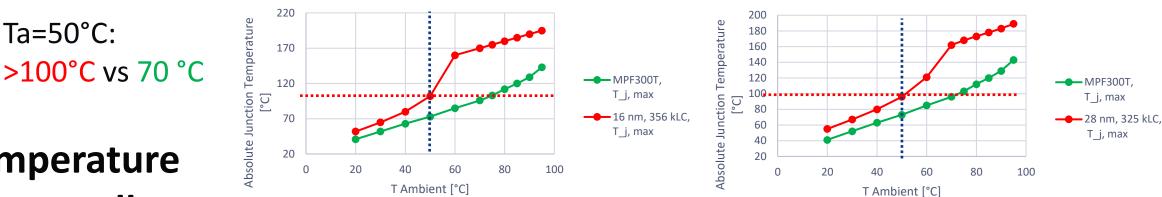
→ Copy/Paste + adaption for comparison = medium effort

couracy

Power Estimation Tools

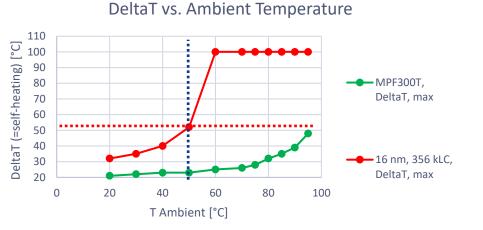
Comparing results


Goal: have common information for direct comparison

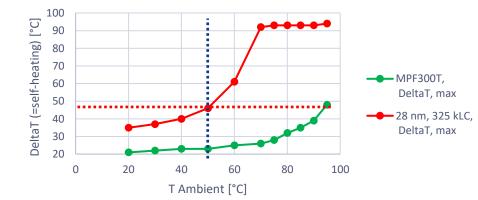


	Microchip Power Comparison Tool			
Name of Microchip Power Estimator	MPE Person Detection.xlsm			
Name of Xilinx Power Estimator	XPE_7_Person_Detection.xlsm			
		1) Transfer XPE 2 MPE		
Source Architecture	7 Series			
Average Depth of Shift Registers	5			
Theta Junction Ambient [°C/W]	8			
Set Theta JA in Estimators	TOUE			
✓ Set Theta JA in Estimators TRUE If tickbox is set then the Tja-value from cell B12 is used in both estimators.		2) Create Power Comparison		

Result: Temperature sweeps for bigger picture

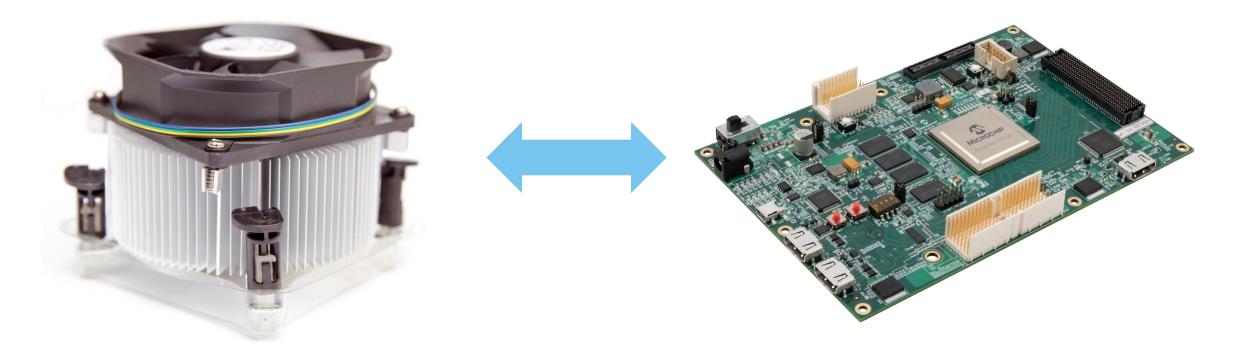

Power Estimation and Temperature System Environmental Condition

Absolute Temperature vs. Ambient Temperature


Temperature sweeps allow behaviorcomparisons

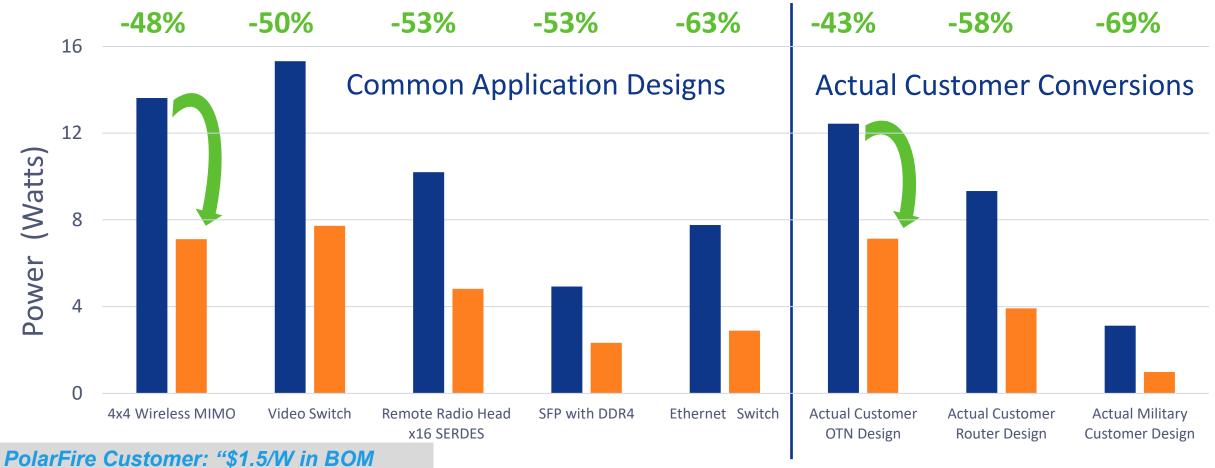
Ta=50°C:

Absolute Temperature vs. Ambient Temperature


DeltaT vs. Ambient Temperature

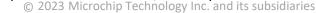
System Implication

• Resulting Junction Temperature >100°C vs. 70°C



SRAM FPGA add-on kit

PolarFire video kit


PolarFire[®] Power Savings by Design Lowest Power – Saving 43% to 69% Versus Competition

Competitor PolarFire FPGA

All designs using official layout and power estimation tools with common effort levels

All designs using PolarFire standard speed devices versus low-power-binned devices; similar performance devices)

cost saving due to power savings"

Summary Microchip Advantage on Power/Watt

- Microchip FPGAs provide significant poweradvantage over competition
- Lower power = less trouble
- Significantly lower power = system benefit

• You can see on your own existing design

Thank You

Microchip provides material in this webinar strictly "as is" for informational purposes only and without any warranties. This material is deemed "Content" under Microchip's Website Terms and Conditions ("Terms of Use") and governed by such Terms of Use available at www.microchip.com.

