Low Power FPGAs-Far Beyond Battery Life

A Leading Provider of Smart, Connected and Secure Embedded Control Solutions

FPGA 2022

Table of Content

- Why and where does power consumption matter
 - I am cable-powered. Why would I care?
 - Where does low power help on the "Big Three"
- Microchip FPGA positioning
 - Low power FPGA
 - What are applications to look for?
- Competitive Comparison on existing designs
 - Reality-check of tools and models provided by different vendors
 - How can the benefit be proven for the client on their known territory?
 - Power Comparator
- What's in for you?
 - Tool-demo to show on your customer's design

The Power Challenge

Why does Power Consumption Matter?

Why Power Consumption Matters My Machine is Cable-Powered. Why Would I Care?

- Power Consumption is way beyond "battery-life"
 - Lower power = lower self heating
 - No heat-sinks or fans
 - Avoids cost and components that can fail
 - Smaller physical system-size and lower system cost
 - Longer device life-time due to lower junction temperature
 - Longer MTTF = lower FIT-rate
 - More features on power budget
- Big 3
 - Reduce Risk
 - Save Money
 - Make Money

https://www.microchip.com/en-us/about/blog/learning-center/low-power-system-saving-even-in-plug-in-devices

Lowest Power – Up to 50% Lower than Competitors

• Enabling Application Performance at Significantly Lower Power

Static power: **10x Reduction**

Transceiver power: 2x Reduction

Total power up to 50% lower than <u>best case</u> competitor:

PolarFire® Customer: "\$1.5/W in BOM cost saving due to power savings"

Significantly Lower Power Consumption By Technology and By Design

MICROCHIP Non-Volatile Cell

Non-Volatile memory: retains its state 1000x lower leakage per cell Features: designed for LOW POWER (Transceivers, Microprocessors, etc)

Total Power Savings of 30-50% vs SRAM FPGAs

PolarFire Success – Based on Low Power Smart Embedded Vision Designs

Thermal Cameras

Machine Vision

•

Microscope Cameras

Surveillance Camera

Portable Ultrasound

- Low Power = less heating on IR-sensor
 less thermal noise
- Low Power + small footprint = smallest hi-res industrial camera
- Low Power + small footprint = new application market

Microcontroller vs. FPGA

Design Approach – Use vs. Build

Architecture "Comparison"

Microcontroller

- Fixed & defined architecture
- Controller-components are <u>used</u>

FPGA

- <u>Required</u> functionality is <u>built</u> using pre-defined "blocks"
- Some system-level components are present (clocks, DSP, etc.)

What is an FPGA?

I heard it is complex and expensive?

- Simple way to think about FPGAs = Lego for engineers
 - Blocks of configurable logic that build up the larger function
- SoC: FPGA with Processor System = Lego Mindstorm

Architectural Flexibility

Influence on Power

- Based on design-content significant difference in power consumption
- Power estimation tools required and present for users
- Allow system-dimensioning of supplies and thermals under environmental conditions

Application Examples

Smart Vision

PolarFire® Success Smart Embedded Vision Designs

PolarFire has demonstrated success in broad-market Industrial Imaging end-equipment

Application Examples

Medical

Solving Problems in Medical Markets

Portable Imaging Lowest Power, Small Packaging

Medical Eye Tracking

Portable Ultrasound

Satellite

Security Device and Data Secure Medical Infusion Pump

Tamper and Theft Proof Medical Infusion Pump

Portable Head-mounted Applications

PolarFire & SOC

Application Examples

Imaging

Customers' LiDAR and Camera Applications

Structural and Civil Engineering

Industrial Lidar Solutions

High Resolution Industrial Solution

Customers' Industrial Radar

Industrial Radar for Liquids

Self-sufficient Radar Sensor With Radio

Combination of small size and low power

Allow integration into tight and space/power constrained housings

Total System Solution for Ultrasound

Handheld Scanner Reference Design

- HV Pulser: HV7358 X 2
- HV MUX: HV2918 X 4
- FPGA: PolarFire & PolarFire SOC
- Clock generator: DSC400

- Power: MIC9131, MIC28514, MIC37102
- USB: USB5742
- WIFI: WILC3000

Application Examples

Motor Control

Motion Control FPGA Applications Focus

Servo, Linear Drive Machine Tool, Needle Selection Machine, Robots, Industrial Drones, Medical Robots

Consumer, Induction Motor 1-axis, Power Tools, Consumer Drones, Sewing Machines

Advantages- FPGA Based Motor Control

Feature	MCU or DSP	SmartFusion2 SoC FPGA/IGLOO2 FPGA
Determinism	• Tasks run sequentially, with different execution times and interrupt-based priorities. Execution in ISRs are not always bounded.	Tasks run in parallel. Execution time of each task is deterministic and always produces deterministic outputs
Reliability	• Vulnerable to single-event upset (SEU) and soft-errors at ground level	SEU Immune
Security	• Need additional Crypto products for tamper protection, cloning, and overbuilding risks	 In-built security solutions (Supply chain security, Secure Boot-CPU[™], M2M secure communications, Public Key Infrastructure, No overbuilding HSMs and Information assurance)
Scalability and Performance	 Demand a high switching frequency when using high-speed motors (500 kHz for 2 μs FOC loop) Adding motors not scalable (>4 motors), complex ISR implementations required Not flexible for platform development 	 1 µs FOC loop achievable at lower frequencies TDM for FOC can be used to control multiple motors (M2S010/M2S025- 4 motors M2S060 – 8 motors etc.) FPGA platforms allow multi-motor/ communication/encoder/memory support, for 15+ years end-product lifecycles
Execution	Motor 2 Motor N	FOC execution time = lus Motor 1 Motor 1 Motor 2 Motor 2 Motor 3 Motor 3 Motor N Motor N

Time →

Ordering The Motor Control Kit

Ordering Code	Description	Resale		
SF2-MC-STARTER-KIT	SmartFusion2 dual-axis motor control starter kit	\$899		

Motor Control Starter Kit

- Quick Start Card
- Starter board
- 1 BLDC motor
- 1 Stepper motor
- 24V power supply
- JTAG connector
- Mini USB cable
- Libero Gold edition
- FlashPro programmer

- IP design project and GUI included
- IP VHDL and Verilog 'source code' available with license agreement and fee
- Support for:
 - Libero software
 - IP and project customization via Design Services

Multi-axis Control in UAV/Drones

https://www.youtube.com/watch?v=7vNhXyX8hHY

- Maximum efficiency and increased drone flight time by employing Field Oriented Control (FOC) of BLDC motors on FPGA to generates sinusoidal currents.
- Single FPGA for Multi-axis control and central flight control, the solution allows for stable gyros and
- Improved mechanical reliability due to improved noise and vibration parameters

The Power Challenge

Comparing Microchip Polarfire® and Competitor Y

Comparison On Power Estimators But These are just Rough Estimations?

Rumour	Fact	Proof		
This is just a simulation	If the models are good enough then it is ok	Whole FPGAs are simulated		
Power estimation is very crude and unprecise	Accuracy depends on entered data			
Numbers are not trust- worthy	Significant effort put into tools => first touch for users	Don't believe it.→ See for yourself		
One cannot directly compare	Tools very similar between vendors			

Checking Simulation vs. Reality Do The Models Match "Enough"?

Requirement:

- Compare known designs on estimation and measurement
- Application should be *"similar"*, using same external interfaces

Approach

- Devices on boards are typical devices
- Environmental conditions are measurable
- If models are "good enough" then estimation and measurement will match
- ➔ Compare two boards and consider similarities and differences

Checking Power Models in Reality PolarFire® MPF300 vs. Competitor Y

- PolarFire MPF300:
 - 300.000 LUT4 & Flipflops
 - 12.7 Gbps transceiver
- Competitor Y
 - 203.800 LUT6, 407.600 Flipflops
 - 12.5 Gbps transceiver
- Same design in both boards
 - 800 Block RAMs (set for 18 kb)
 - 4 Tranceiver at 10Gbps
 - 5277 LUT4 (PolarFire) / 4344 LUT6 (Competitor Y)

Thermal Readings To Estimation Analysis Do Reality and Simulation Match?

- Measurements on boards should match temperature prediction from power estimation
- If that applies, then models are "accurate enough"
- Compare boards, results are shown in the following slides

Property	Microchip	Competitor Y
Device	FPGA	FPGA
FPGA-size	300 kLE	325 kLC
Internal RAM	800 LSRAM a 20kB	800 BRAM set to 18 kb

Power Evidence

Parallel Setup Under Identical Conditions

- Operated at 30°C room-temperature
- PolarFire[®] MPF300 without heat-sink
- Competitor Y with small heat-sink
- Resulting temperature read with thermal camera and thermocoupler
- Measured temperature with thermocoupler:
 - PolarFire: 45.7°C
 - Competitor Y : 62.1°C

Thermal Readings on Boards Reality and Simulation Match?

- Devices on boards considered as "typical" devices
- Measurements on boards match temperature prediction from power estimation "enough"
- Models are "accurate enough"
- Use Power Estimator to look at the bigger picture

The Power Challenge

What Can "My Design" Save in Power & How to Prove?

Thermal Sweeps How To Do That?

- Power Comparator: Excel-based competitive comparison
- Use comparable devices
- Runs thermal sweep and creates diagrams
- Direct comparison on power and selfheating

Estimate Converted Designs

Power Estimator Helps Winning on Power

Power estimators can be filled with

Manually estimated design-resources

41

- Exported data from implemented designs
- Applies to both Microchip and Competitor Y
- Temperature sweeps for typical and worst case

• Systems need to be designed for worst case

How To Estimate Correctly Get The Bigger Picture

- Self-heating can be significant!
 - Use estimated junction temperature
- Compare typical and worst-case devices
 board must be designed for max
- If available:

take exported data from implementation

Do temperature sweeps on ambient
 graphs validate / invalidate data

Remember? -

Thermal Sweep Results

What are Implications for the System?

- Device aging
 - T ambient = 50°C, Theta JA = 8.2 °C/W
 - Junction temperature PolarFire[®] SoC: 70°C, : 109°C

- Resulting MTTF (assumed on identical test-hours)
 - PolarFire SoC: ~10 FIT
 - Competitor Y : ~107 FIT
- Lifetime expectations
 - 110°C => 70°C, approximately 7x more life-time of electronic component!

Your Design Estimates

What Can You Save On Your Competitor Y Design?

Estimate and Compare

How Much can Your Design Benefit?

Temperature sweeps for typical/worst case on both architecture

- Either set tick-box for similar Theta JA or set in power estimators
- Creation of diagrams

40

T Ambient [°C]

60

80

100

Fotal Power Consumption

Mm Mm

6000

5000

4000

3000

2000

1000

Ω

Ο

So What?

What do the Diagrams Tell?

- Model limit reached
 => device will need cooling
- 2. PolarFire[®] SoC at similar thermal conductivity has ~15°C more thermal margin

Microchip: – Competitor Y:

Summary

What to do next?

Summary What do the Diagrams Tell?

- Microchip FPGAs provide significant poweradvantage over competition
- Lower power = less trouble
- Significantly lower power = system benefit!

Manual Data Entry Power Estimator Similar Between all Vendors

- Power estimation tools well known in FPGA community
- Design entry on tabs in Excel-Tool:

_				Glaba				100.0%	0 000					
	Summary	Graphs	Snapshot	Current Breakdown	Clock	Logic	LSRAM	uSRAM	Math Blo	ck IO	Transceiver	PLL & DLL	User	Release

• Enter estimated logic for design:

Name	Clock Frequency (MHz)	Number of DFF	Number of 4LUT	Design Complexity	Toggle Rate	Power (W)
				3.0	12.5%	0.000
				3.0	12.5%	0.000

 Do this for every basic component in FPGA fabric (Clock, Logic, internal RAM, Math-Blocks, IO, Transceiver, PLL)

Exported Data Entry Microchip Power Estimator Specific for Design, Good Accuracy

- Power estimator allows change of environmental conditions
- Implement design in Libero SoC
- Open "Verify Power" in interactive mode
- Menu: Tools\Export Report for MPE...
 - creates XML for import into MPE
- Import XML into MPE
 - ➔ correct logic-sizes and toggle-rates are set

Design Creation MPF300 Video Kit

- Design used on PolarFire[®] MPF300 is stripped down version of demo for MPF300-VIDEO-KIT
 - VKPFH2RXTX.7z, available internally at Microchip
 - Send email to <u>Martin.Kellermann@microchip.com</u>
 - Design created in Libero 12.0

