
How to Hide MetaData in MLS-Like Secure Group Messaging:
Simple, Modular, and Post-Quantum

Keitaro Hashimoto
∗

Tokyo Institute of Technology & AIST

Tokyo, Japan

hashimoto.k.au@m.titech.ac.jp

Shuichi Katsumata
†

AIST & PQShield Ltd.

Tokyo, Japan & Oxford, U.K.

shuichi.katsumata@aist.go.jp

Thomas Prest

PQShield SAS

Paris, France

thomas.prest@pqshield.com

ABSTRACT
Secure group messaging (SGM) protocols allow large groups of

users to communicate in a secure and asynchronous manner. In

recent years, continuous group key agreements (CGKAs) have pro-

vided a powerful abstraction to reason on the security properties

we expect from SGM protocols. While robust techniques have been

developed to protect the contents of conversations in this context, it

is in general more challenging to protect metadata (e.g. the identity
and social relationships of group members), since their knowledge

is often needed by the server in order to ensure the proper function

of the SGM protocol.

In this work, we provide a simple and generic wrapper protocol

that upgrades non-metadata-hiding CGKAs into metadata-hiding

CGKAs. Our key insight is to leverage the existence of a unique

continuously evolving group secret key shared among the group

members. We use this key to perform a group membership authenti-

cation protocol that convinces the server in an anonymous manner

that a user is a legitimate group member. Our technique only uses

a standard signature scheme, and thus, the wrapper protocol can

be instantiated from a wide range of assumptions, including post-

quantum ones. It is also very efficient, as it increases the bandwidth

cost of the underlying CGKA operations by at most a factor of two.

To formally prove the security of our protocol, we use the univer-

sal composability (UC) framework and model a new ideal function-

ality Fmh
CGKA

capturing the correctness and security guarantee of

metadata-hiding CGKA. To capture the above intuition of a “wrap-

per” protocol, we also define a restricted ideal functionality F ctxt
CGKA

,

which roughly captures a non-metadata-hiding CGKA. We then

show that our wrapper protocol UC-realizes Fmh
CGKA

in the F ctxt
CGKA

-

hybrid model, which in particular formalizes the intuition that any

non-metadata-hiding CGKA can be modularly bootstrapped into

metadata-hiding CGKA.

KEYWORDS
secure group messaging; metadata-hiding; messaging layer secu-

rity; continuous group key agreement; generic construction; post-

quantum security

1 INTRODUCTION
A secure group messaging (SGM) protocol allows a group of users

to asynchronously communicate in an end-to-end encrypted (E2EE)

fashion. With the advent of Signal, SGM protocols have seen ex-

ponential growth in practical use, and currently, IETF is almost

∗
The author was partially supported by JSPS KAKENHI Grant Number 22J13963, Japan.

†
The author was partially supported by JSPS KAKENHI Grant Number 22K17892,

Japan and JST AIP Acceleration Research JPMJCR22U5, Japan.

finished standardizing the Messaging Layer Security (MLS) SGM

protocol [14] known to offer good scalability properties.

The baseline security notion guaranteed by all SGM protocols

is that no adversary, including the server, should be able to read

the messages sent among the group members. However, this does

not prevent the adversary from collecting metadata, such as the

identities of the sender and of other group members, which can

both be leaked from the exchanged encrypted contents. It has been

shown in numerous real-world scenarios [23, 34, 49, 51, 54] that

knowledge of metadata alone can cause damaging repercussions,

sometimes enough to defeat the purpose of using SGM protocols.

These also have negative impacts on the activity and safety of

some users, e.g., journalists and activists [47, 48]. Recent media

articles [18, 42] report that, in the United States, metadata collec-

tion by law enforcement agencies on secure messaging applications
is a widespread practice, supported by a legal [42] and technical

framework [18] that gives it a wide reach.

Metadata in SGM. In SGM protocols, we can informally divide

sensitive information into the following three layers:
1st layer: group secret keys & messages

2nd layer: static, explicit metadata

3rd layer: dynamic, implicit metadata

}
=: “metadata”

Securing the 1st layer is the default goal of any SGM protocol;

exchanging messages in an E2EE fashion is only possible if secure

group secret keys
1
are shared among the group. Since the server

is not considered an endpoint of the conversation, state-of-the-art

SGM protocols aim at protecting the 1st layer from the server.

The 2nd and 3rd layers together constitute the metadata. Since

they help the server to ensure the functionality of the SGM protocol,

they are often only encrypted using a transport layer encryption

protocol (like TLS or Noise [52]) between the server and the partic-

ipants. In this case, the server has access to this information and

may expose it if legally compelled, as discussed earlier.

The 2nd layer captures any static metadata that is explicitly
leaked from the content transmitted over the channel. For instance,

the exchanged content may explicitly include the identity of the

sender in the clear or the identity of a member being added, as in

e.g. vanilla Signal [45] and MLSPlaintext [14]. Static metadata are

also defined as a collection of sender information and handshake
messages in the MLS standard draft [14, Sec. 10.1].

The 3rd layer captures any dynamic metadata that is implicitly
leaked from the access pattern between group members and the

1
There could either be a unique group secret key shared among the entire group

as in MLS or multiple group secret keys, where different segments of the keys are

shared among different members of the group as in Signal to perform pairwise

communications.

1

https://orcid.org/0000-0002-2232-9443
https://orcid.org/0000-0002-8496-0476
https://orcid.org/0000-0003-1445-6212

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Keitaro Hashimoto, Shuichi Katsumata, and Thomas Prest

Table 1: SGM protocols and the corresponding layers they protect.
“¦” (resp. “p”) indicates that there is a (resp. are no) security proof.
“✓” indicates that there is a proof capturing the security of the 2nd
& 3rd layers but not of the 1st layer.

Layer 1st 1st & 2nd 1st, 2nd & 3rd

Signal Vanilla Signal ⊥ Private Groups
Security proof p ⊥ ✓ [25]

MLS MLSPlaintext MLSCiphertext ⊥
Security proof ¦ E.g., [9, 12] p ⊥

server via the communication channel. For example, inMLSCipher-
text that hides up to the 2nd layer, users connect to the server using
a non-anonymous protocol such as TLS. Then, since the user implic-

itly identifies itself to the server via the channel, the server learns

the group member’s identities (and how many times each member

accessed) by observing the users accessing the same group identity.

In particular, this happens regardless of protecting the 2nd layer

metadata. To hide the user identity on the channel, users can use

anonymous protocols (e.g., Tor [1, 31]) instead. However, even if an

anonymous protocol is used when a user fetches information about

a group they belong to, the exact subset of accessed information

may be correlated to this user’s identity. This may for example be

the case for SGM protocols that arrange group members in complex

data structures such as trees. Specifically, hiding the metadata only

at the 2nd layer while using anonymous channels is insufficient

since similar information may be inferred from the 3rd layer, which

incorporates all implicit leakages of dynamic metadata.

In this work, only when all three layers are secured do we say

that an SGM protocol is metadata-hiding.2

Existing metadata-hiding SGM. Existing SGM protocols and

the level of layers they protect are depicted in Tab. 1. Signal re-

cently proposed a metadata-hiding SGM protocol that we call Pri-
vate Groups [3]. This is an extension of Sealed Sender [2] — a

metadata-hiding two-user secure messaging protocol. The main

building block of Private Groups is an efficient MAC-based keyed-
verification anonymous credential (KVAC) [24] that leverages the
specific properties of tools from classical group-based cryptogra-

phy, such as the ElGamal PKE and Schnorr PoK. While there is

no formal security proof for Signal’s vanilla SGM, recently Chase,

Perrin, and Zaverucha [25] proposed a new security model to cap-

ture exactly the metadata layers (2nd & 3rd layers) and provided a

partial security proof of Private Groups.
MLS [14] comes in two variants: MLSPlaintext and MLSCipher-

text, each corresponding to protocols protecting the 1st and 1st &

2nd layers, respectively. The security of MLSPlaintext has been
scrutinized over the past few years [8, 9, 12, 17, 19] and we now

have a good understanding of it. However, no formal security proof

for MLSCiphertext is known. Moreover, unlike Signal’s Private
Groups, constructing any variant of MLS that further hides the

dynamic metadata is unanswered. Considering that dynamic meta-

data leaks part of, if not all, static metadata,MLSCiphertext may

be leaking more metadata in practice than ideally expected.

2
Note that there are other types of metadata we can consider such as access timing [46]

and geolocation of users.

p =

(
gid, epoch, idp, act, · · ·

)
c =

(
gid, epoch, idc, · · · , ctkey

)
Sv

id1 id2

p1

®p

c2

Figure 1: (Left) p and c are proposals and commits. (Right) id1 uploads a pro-
posal p1 to the server Sv; id2 downloads all the stored proposals ®p and uploads
a commit c2 for the next epoch. The single (resp. double, triple) bordered box
indicates the 1st (resp. 2nd, 3rd) layer information.

1.1 Goal of This Work
In this work, we focus on continuous group key agreement (CGKA) —
an abstraction that captures the core protocol underlying the MLS

protocol, i.e., TreeKEM [16], and many other MLS-inspired SGM

protocols [5, 8–12, 30, 36, 41].
3
In brief, CGKA allows an evolving

group of users to agree on a continuous sequence of group secret

keys. Other than the simple function of sharing a group secret key,

CGKA further models the strong notions of forward secrecy (FS) and

post-compromise security (PCS) [7, 28, 29], which allow to greatly

limit the scope of a compromise.

In a nutshell, a CGKA works as follows (see also Fig. 1):
4
A

group member may either (a) add a new member, (b) remove a

member, and/or (c) update its keys by sending a proposal p. In
an arbitrary interval, a group member may download the list of

proposals ®p = { p𝑖 }𝑖 from the server and take them into effect by

transmitting a commit c — this creates a new epoch where the group

state is updated according to ®p. Importantly, a commit also updates

the group secret key to achieve PCS.

A proposal p consists of five elements: (i) a string gid identifying

the group; (ii) a counter epoch that specifies the current group

state; (iii) the identity idp of the member creating p; (iv) a string act
specifying whether p corresponds to (a), (b), or (c); and (v) other

information typically required for authentication. A commit c has
a similar structure, where idc denotes the committer and ctkey is a
ciphertext encrypting a key used to update the group secret.

As depicted in Fig. 1, key is the 1st layer information, and any

other static information included in p and c other than (gid, epoch)
belong to the 2nd layer. Here, (gid, epoch) needs to be clear so that
the receiver can download the appropriate p and c from the server.

In the past few years, we have seen several increasingly stronger

or different types (e.g., game-based, simulation-based) of security

models for CGKA [5, 8–12, 19, 37, 41, 57], however these models

only capture security at the 1st layer. Although it is straightforward

to construct a CGKA that intuitively secures the 2nd layer once a

group secret key is established, it is not clear whether this intuition

is correct. Indeed,MLSPlaintext has undergone 13 iterations, and
formal security analyses of the 1st layer [8, 12] uncovered some

subtle bugs. Thus, our first goal is the following:

(G1) Propose a securitymodel capturing the security of the 1st
& 2nd layers and prove the security of existing CGKAs.

As discussed above, securing the 2nd layer alone is insufficient. At

first glance, it is tempting to replace the use of TLS for client-server

communication with a client-anonymized authenticated channel

3
To be accurate, MLS was inspired by asynchronous ratchet trees (ART) [30].

4
We base the explanation on the most recent iterations of TreeKEM (i.e., after version

8 on MLS) following a “propose-and-commit” flow.

2

How to Hide MetaData in MLS-Like Secure Group Messaging:
Simple, Modular, and Post-Quantum CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

(e.g., VPN or an anonymized proxy such as Tor [1, 31]) in order

to hide the 3rd layer. Unfortunately, this introduces another issue

since, without any authentication on the client side, any adversary

who knows (gid, epoch) can upload arbitrary garbage proposals

and commits to the server, causing a denial of service (DoS) against

the group. It could be possible to rely on the efficient MAC-based

KVAC used by Signal’s Private Groups [3], however, their con-
struction is highly limited to a classical, pre-quantum setting, and

the security proof is in the generic group model [55]. Considering

the modularity of the vanilla Signal and the MLS protocol, hav-

ing a generic construction that can be efficiently instantiated from

versatile assumptions, including but not limited to post-quantum
assumptions, is highly desirable. Of independent interest, we note

that in the face of a compromise or removal of a group member,

Private Groups must restart a new group [25]. It remains an inter-

esting problem to construct a protocol that offers any (non-trivial)

PCS. This brings us to our second goal:

(G2) Propose an efficient and generic metadata-hiding CGKA
achieving the same level of FS and PCS offered by exist-
ing non-metadata-hiding CGKAs.

Finally, Chase, Perrin, and Zaverucha [25] proposed a security

model capturing the 2nd & 3rd layers of Signal. However, it does

not capture the 1st layer of security, i.e., confidentiality and integrity

of exchangedmessages, nor the notion of PCS. Moreover, this model

is tailored to the specific construction of Signal’s Private Groups [3]
and seems unfit for CGKA. Thus, we arrive at our final goal:

(G3) Propose a security model for metadata-hiding CGKA.

1.2 Our Contributions
UC model for the 2nd layer. We propose the first security model

of CGKA capturing the security of the 2nd layer, i.e., static meta-

data. Our security model extends the state-of-the-art universal

composability (UC) security model used by Alwen et al. [12] and

Hashimoto et al. [36] to analyze TreeKEM version 10 in MLS and

Chained CmPKE, respectively — we denote the ideal functionality

as F ctxt
CGKA

.
5
The main new ingredients we introduce are leakage

functions that allow us to formally model the leaked static metadata

(e.g., sender’s identity) from the proposals and commits. Similar

to the state-of-the-art ideal functionalities, ours captures a strong

model where active adversaries can tamper with or inject messages,

and malicious insiders can invite malicious members to the group

and arbitrarily fork the group state. With this formalization effort,

we answer the first half of (G1), see Sec. 3 for details.
ChainedCmPKEctxt UC-realizes F ctxt

CGKA. We prove that a cipher-

text variant of Chained CmPKE by Hashimoto et al. [36], coined as

Chained CmPKEctxt, UC-realizes the ideal functionality F ctxt
CGKA

.
6

Considering the similarity between Chained CmPKE and TreeKEM,

we believe the ciphertext variant of TreeKEM can also be proven

secure following a similar proof. The reason why we focused on the

former is that it is in some sense a generalization of the latter — it al-

lows members to selectively download updates from the server, also

known as filtered CGKA [11]. This generalization allows obtain-

ing a concretely efficient CGKA even in the post-quantum regime,

5
The subscript “ctxt” is inspired by the protocol name MLSCiphertext

6
This variation mirrors what MLSCiphertext does to MLSPlaintext, in the sense that

it encrypts the static metadata by applying a layer of encryption.

which otherwise could be quite inefficient [36]. This security proof

addresses the second half of (G1), see Sec. 3 for details.
UC model for the 3rd layer. We propose the first UC security

model of CGKA capturing the security of the 3rd layer, i.e., group

access pattern — we denote the ideal functionality as Fmh
CGKA

. Any

CGKA that UC-realizes Fmh
CGKA

is a metadata-hiding CGKA. The

model captures the fact that a group member performing an upload

or download remains anonymous and unlinkable from the server,

while also restricting non-group members from accessing the group

contents. To formalize the latter property, our ideal functionality

Fmh
CGKA

captures an honest-but-curious server for the first time. All

prior models only considered malicious servers so it was not pos-

sible to define a “correct” behavior of the server, i.e., shutting out

non-group members. Fmh
CGKA

allows the adversary to corrupt the

server, in which case it becomes identical to F ctxt
CGKA

defined above.

This answers (G3), see Sec. 5 for details.
A generic and efficient protocol UC-realizing Fmh

CGKA. We pro-

vide a simple and generic wrapper protocol𝑊mh
that UC-realizes

Fmh
CGKA

in the F ctxt
CGKA

-hybrid model. Specifically, given an arbitrary
CGKA Πctxt that UC-realizes F ctxt

CGKA
,𝑊mh

in composition with

Πctxt UC-realizes Fmh
CGKA

. Unlike Signal’s Private Groups, we do not
rely on complex tools such as a MAC-based KVAC, whose known

efficient instantiations require classical group-based assumptions.

Our key insight is to leverage the unique group secret key shared

among the members (which is non-existing in Signal) to perform a

proof of membership to the server. The concrete construction of our

wrapper protocol only requires a standard signature scheme, which

can be efficiently instantiated using either classical or post-quantum

assumptions. Our metadata-hiding CGKA inherits all the FS and

PCS properties satisfied by the underlying CGKA satisfying F ctxt
CGKA

.

For instance, usingMLSCiphertext as the underlying CGKA, the
upload cost of a key update of our metadata-hiding CGKA can be

𝑂 (log𝑁), as opposed to 𝑂 (𝑁) for Private Groups. This provides a
theoretic answer to (G2), see Sec. 4 for details.
Instantiation and efficiency analysis. We provide concrete in-

stantiations of our protocols under either classical or post-quantum

assumptions. We then study the bandwidth impact of𝑊mh
when

applied to Chained CmPKEctxt. The impact of𝑊mh
is moderate,

as it never increases the bandwidth cost of the principal opera-

tions (“update”, “add” and “remove” proposals, as well as commit

or application messages) by more than a factor of two. In practice,

the concrete overhead may be even lower. This illustrates that our

notion of metadata-hiding CGKA can be realized at a moderate cost.

This covers the efficiency aspects of (G2), see Sec. 6.2 for details.
Statistical leakage from metadata-hiding CGKA. Our security
model allows us to prove that a CGKAUC-realizes an ideal function-

ality Fmh
CGKA

with respect to a specific leakage function, which defines
any inherent metadata leakage that cannot be hidden. What the

adversary can learn from this leakage function is another question.

We initiate a discussion on the nature and extent of the infor-

mation that can be inferred from this leakage. We study several

CGKAs [5, 11, 12, 36, 41] and find that all of them leak information

through the size of protocol messages (welcome, proposal and/or

commit), sometimes in surprising and indirect ways. At this point,

we emphasize that the authors of these protocols never claimed

3

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Keitaro Hashimoto, Shuichi Katsumata, and Thomas Prest

them to be metadata-hiding, so this leakage does not reflect the

shortcomings of the designs. We believe that a systematic study

of this leakage, as well as proposing countermeasures to provably

mitigate it, constitutes a valuable and exciting research direction.

For now, this discussion explores the limitations of (G3), see Sec. 7
for details.

We would like to clarify the limitations of this work. First, we

only consider the CGKA aspect of SGMs. While it is believed

that CGKA captures the essence of SGMs — which is supported

by the vast amount of research focusing solely on CGKA [5, 8–

12, 19, 36, 41, 57] — to argue a provably secure metadata-hiding

SGM, we would need to extend our security model to cover the

message exchanging layer as well. It was only recently that a se-

curity model that captures the entire SGM at the 1st layer was

proposed [9]. Second, our security model and protocol do not pre-

vent an adversary from anonymously registering numerous fake

groups on the server. We only prevent an outsider from accessing

an existing group. Technically, this seems efficiently solvable using

standard anonymous credentials [26] and we leave it as future work

to incorporate these into our security model. Finally, metadata out-

side the scope of our models, such as access timing [46] and device

fingerprinting, may circumvent the privacy guarantees provided

by a metadata-hiding CGKA.

2 BACKGROUND
We now provide some background on the existing definition of

CGKA that models the default security of the 1st layer, i.e., group
secret key.7 In this work, we focus on CGKA defined in the UC

framework. With the nice composability property, we will be able

to construct a metadata-hiding CGKA in a modular manner.

Due to page limitation, we refer the readers to App. B for some

background on the UC framework and a formal definition of the

ideal functionality FCGKA capturing the UC security of the 1st layer.

2.1 Syntax of CGKA
All the group members internally store the group identifier gid, the
current epoch of the group, the current group secret key, and infor-

mation to identify the current members. Moreover, each member

(roughly) stores a public key whose associated secret key is known

only to themselves. This is called the key material.
Members can upload proposals p to the server, which can take

on three types: addition or removal of some members, and update

of key materials. Members can download any subset of these pro-

posals ®p at an arbitrary interval to create a commit c. Any members

can then process this commit to update their group state to the

next epoch according to the content of the proposals that were

committed. The group secret key is always updated after a process

— if every group member’s key material was uncompromised at

that epoch, then this effectively heals the group and offers PCS.

In this work, we follow the syntax of Hashimoto et al. [36] (which

extends the syntax of Alwen et al. [12]) that models selective down-
loading. This allows the members to only download part of the

7
As mentioned in Sec. 1.2, CGKA only captures the security of the group secret key k.
The message, also included in the 1st layer, is handled by a different protocol. Roughly,

the messages are sent through E2EE using the established k.

commit required to move to the next epoch. Specifically, a com-

mit c is divided into (c0, ®c), where c0 is the member-independent
commit and ®c = (̂cid)id is the list of member-dependent commit.

Member id only needs to download (c0, ĉid) from the server to ad-

vance its epoch. Here, we assume there is a canonical ordering of

the group members, and member id requests its index in the list ®c to
the server to download ®c[index] = ĉid. Such selective downloading

can bring great efficiency gain — especially in the post-quantum

regime where asymmetric ciphertexts tend to be much larger than

classical ones (see [36] for further motivations). This formalization

was later coined as filtered CGKA [11].

Informally, CGKA is defined by the following algorithms, where

we assume id is the executing party and omit it from the input.

Group Creation (Create): It initializes a new group state with

party id as the only member.
8

Proposals (Propose, act) → p : It outputs a proposal p for the ac-
tion act that can take on the value ‘add’-id𝑡 , ‘rem’-id𝑡 , or
‘upd’. The first two actions dictate the adding or removal of

id𝑡 . The last updates id’s key material.

Commit (Commit, ®p) → (c0, ®c, ®𝑤): It commits a vector of propos-

als ®p and outputs a commit (c0, ®c). c0 is amember-independent

commit while ®c = (̂cid′)id′ is a list of member-dependent

commits, where |®c | is equal to the current group size. If ®p
contains an add proposal, then it outputs a welcome message

®𝑤 = (𝑤id𝑡)id𝑡 , where id𝑡 denotes the added members.
9

Process (Process, c0, ĉid, ®p): It processes a commit (c0, ĉid) with
the associated proposals ®p, and advances id’s internal group
state to the next epoch.

Join (Join,𝑤id): It allows id to join the group using the welcome

message 𝑤id. id’s group state is synced with any member

who processes the commit made at the same epoch.

Key (Key) → k: It outputs the current group secret key k.

2.2 Default UC Security Model of CGKA
All prior works on CGKA capture the rough security notion that

the group secret key should remain hidden from the adversary.

We follow the state-of-the-art UC security model of [12, 36]. In

this model, the malicious server is modeled as an active adversary
that can tamper with or inject messages. Moreover, a rogue group

member is modeled as a malicious insider that can invite other

malicious members (e.g., server) to the group and arbitrarily fork

the group state. The UC security model captures the fact that even

in face of such strong adversaries, the group secret key remains

indistinguishable from random under certain conditions. Below, we

explain the high-level description of the ideal functionality FCGKA.
History graphs and the safe predicate. The core concept un-
derlying the definition is the so-called history graph [9, 12] main-

tained by FCGKA. A history graph is a symbolic representation of

the group’s evolution, where each node on a graph roughly cor-

responds to a group state at a particular epoch.10 It tracks all the
generated commits and proposals, and group members’ positions

8
Following prior definitions [10, 12, 36], we assume Group Creation is run only once.

9
Although we can also structure ®𝑤 to have a party independent 𝑤0 and dependent

part, we chose not to do so since it leads to a less secure metadata-hiding protocol.

Roughly, by looking at 𝑤0 , the server can infer who will be added to the same group.

10
The formal definition is made with more care since in case an adversary forks the

group state, two different nodes with the same epoch can be created.

4

How to Hide MetaData in MLS-Like Secure Group Messaging:
Simple, Modular, and Post-Quantum CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

on the history graph. To define the security of the group secret

key, FCGKA is parameterized by a predicate safe, which takes the

history graph and a node as input, and assigns a random group

secret key k← K to a node where safe is true. This formalization

allows modeling FS and PCS naturally. For example, an adversary

A can corrupt a member at some epoch, thus making safe false

at epoch. If the member is healed at a later epoch′ > epoch, then
safe becomes true again at epoch′. Importantly, safe is a scheme-

specific predicate that can be defined arbitrarily to capture different

levels of FS and PCS.

𝒜

𝒵

#id

ℱ!"#$

("Propose", act)

("Propose", gid,
epoch, id, act)

𝑝

𝑝

(a) Propose

𝒜

𝒵

#id

ℱ!"#$

("Commit", gid,
epoch, id, 𝑝⃗)

("Commit", 𝑝⃗)(𝑐%, 𝑐, 𝑤)

(𝑐%, 𝑐, 𝑤)

(b) Commit

Figure 2: Group operations in the UC security model. Z invokes
the dummy party ĩd, and FCGKA informs the adversary A of this
invocation. A simulates the corresponding proposal or commit and
sends it to FCGKA. W.l.o.g., we assume A sends the same information
toZ, denoted by a dashed line. The shaded region denotes the history
graph maintained by FCGKA.

Example: Ideal propose and commit.We depict the ideal Propose
and Commit functions in Fig. 2, whereZ denotes the environment.

For example,Z can invoke the (dummy) party ĩd to execute a com-

mit on an arbitrary list of proposals ®p. FCGKA then provides to A
the proposals ®p along with all the static metadata (gid, epoch, id)
included in a commit, where id denotes the identity of the commit-

ter. A interprets the proposals ®p and simulates the commit (c0, ®c),
where it further simulates the welcome message ®𝑤 if ®p includes

an add proposal. The commit and welcome messages are sent to

FCGKA and are registered in the history graph as a new node indi-

cating that a new epoch has been created. Here, if ®p was generated

by a group member, then FCGKA mandates correctness by checking

if the commit output byA was consistent with the actions included

in ®p. Otherwise, in case some p ∈ ®p was not generated by a group

member, then this implies that the server or some rogue insider

injected a malicious proposal.

3 HIDING STATIC METADATA IN CGKA
As a first step, we propose a UC security model capturing the

security of the 1st & 2nd layers (i.e., group secret keys and static
metadata) by defining a new ideal functionality F ctxt

CGKA
. Similarly

to the safe predicate used in FCGKA to control the levels of FS and

PCS, F ctxt
CGKA

comes with five leakage functions allowing to control

the amount of static metadata leaked from create group, proposal,

commit, process, and join. By defining the leakage functions to leak

all the static metadata, then F ctxt
CGKA

(essentially) recovers the prior

ideal functionality FCGKA.

We then prove that a ciphertext variant of Hashimoto et al.’s

Chained CmPKE [36] satisfies F ctxt
CGKA

, where the leakage functions

are defined to only leak the minimal static metadata matching our

intuition.

3.1 UC Security Model for Static Metadata
F ctxt
CGKA

has the same user interface (or syntax) as FCGKA. The only
difference is how the internals of the ideal functionalities are de-

fined. The full details on F ctxt
CGKA

is provided in App. B. Below, we

explain the two main points at which F ctxt
CGKA

differs from FCGKA.
Modeling static metadata leakage. Recall how FCGKA defined

the ideal proposal function (see Fig. 2). When a party id is invoked

on (Propose, act) from the environment Z, FCGKA informs the

adversary A with (Propose, gid, epoch, id, act). A then simulates

a proposal p. This models the fact that p in the real world is allowed

to leak information on (gid, epoch), the party id creating p, and the
type of proposal act ∈ { ‘add’-id𝑡 , ‘rem’-id𝑡 , ‘upd’ } included in p.

We control the amount of such leakage from p by a leakage

function *leak-prop. Informally, *leak-prop takes as input the

identity id of the member creating the proposal and the current

epoch. In case safe is false at epoch, *leak-prop outputs all the

static metadata since the group secret key is compromised at that

epoch. Otherwise, it only outputs the static metadata the CGKA is

allowed to leak. For example, to modelMLSCiphertext, we define
*leak-prop(id, epoch) to only output (gid, epoch, |id| , |act|) when
safe is true, where |act| leaks the size of the action included in p. In
case every member identity id𝑡 is encoded in the same bit-length,

then this implies for instance that p does not leak who created the

p and who was added and removed.

Similarly to *leak-prop, we define four more leakage func-

tions *leak-create, *leak-proc, *leak-com, and *leak-wel. For
instance, the last two controls the amount of static metadata leaked

from commits and welcome messages, respectively. Unlike propos-

als, the static metadata that is inherently leaked from commits and

welcome messages differs between CGKAs. Thus, care is required

when formally defining them. For instance, inMLSCiphertext, a wel-
come message for member id𝑡 includes a hash of id𝑡 ’s key package

kpid𝑡 (i.e., key materials used by id𝑡). To model this fact, *leak-wel
must also output kpid𝑡 to the adversary (see App. C.2 for more

discussion). Another subtlety is that the size of a commit inMLSCi-
phertext is dictated by how many blank nodes exist in the tree. In

Sec. 7, we discuss the real-world consequences of these inherent

leakages of static metadata.

Using semantics for nodes in history graphs. In this work, we

update the prior definition of history graphs to use the semantics
of a transcript to identify the nodes in a history graph. That is, we

identify a node by a counter that informally counts the number of

group operations leading to the node. In previous works [12, 36]

(which did not capture the security of the static metadata), each

node was identified by the value of the non-encrypted member-

independent commit c0. Since c0 uniquely defined an epoch and

group state, it made intuitive sense to identify each node by c0.
Unfortunately, this intuition is lost when we try to further secure

the static metadata. This is because c0 is now an encryption of the

actual commit content. Namely, there can be two distinct c0 and c′
0

that decrypt to the same commit content. While we would like to

5

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Keitaro Hashimoto, Shuichi Katsumata, and Thomas Prest

assign different members processing c0 and c′
0
to the same node in

the history graph, it is not clear which c0 and c′
0
to use to identify

the node. Such an issue disappears by using the semantics since

the group operation defined inside c0 and c′
0
are identical.

Independently, Alwen et al. [11] also uses the semantics to define

nodes in their security model. This was crucial to capture a more

advanced form of (non-metadata-hiding) CGKA coined as server-
aided CGKA.

Restricted adversary due to commitment problem. In the UC

framework, it is typical to restrict the adversaryA from performing

corruptions that would cause the so-called commitment problem.

Informally, this is a type of attack where A can adaptively choose

to corrupt some states after being provided with some challenges

with respect to the state. While this attack is prohibited by default

in any natural game-based definition (e.g., the adversary cannot

obtain a secret key after being provided the challenge ciphertext),

we need to make this restriction explicit in the UC-based definition.

Compared to prior works in the UC framework [10, 12, 36], the

description of the restriction we require is more strict. Previously,

when a new node was created due to a commit, the predicate safe
was undefined for that node. Roughly, this is because the group

secret key inside that node was never explicitly used during the

real protocol and A was given the freedom to adaptively decide

whether to corrupt that node at an arbitrary moment of the security

game. However, in the static metadata-hiding setting, this freedom

of the adversary needs to be restricted. This is because when a new

node is created, the group secret key inside this node is explicitly

used to encrypt the static metadata of the commit content. When

safe is true at this node, the ideal functionality F ctxt
CGKA

(roughly)

wants to assign a random ciphertext to model the fact that the

commit does not leak any information. Since A is explicitly given

the ciphertext, it cannot later decide to corrupt the node (i.e., safe
remains true), as otherwise, it could trivially distinguish a valid

ciphertext from a random one.

3.2 Proof of Static Metadata-Hiding CGKA
Hashimoto et al. [36] proposedChained CmPKE and showed that it
UC-realizesFCGKA.We show that the ciphertext variant ofChained
CmPKE, which we call Chained CmPKEctxt, UC-realizes F ctxt

CGKA
.

The construction itself is a variationmirroringwhatMLSCiphertext
does toMLSPlaintext. Thus, the technical novelty of this section is

the first formal security proof that models static metadata-hiding.

Considering that the overall structure of Chained CmPKE is simi-

lar to TreeKEM, except that the former further supports selective

downloading, we expect our proof techniques to naturally translate

to the ciphertext variant of TreeKEM. We leave it as an important

future work to formally validate this. Below, we provide the core

insights of our security proof. The full detail is provided in App. C.

Recycling previous proofs. As explained earlier, the ideal func-

tionality F ctxt
CGKA

almost degenerates to FCGKA when the leakage

functions are defined to leak all static metadata. Our proof takes

advantage of this fact. Recall that to prove security in the UC frame-

work, we informally need to construct a simulator S that simulates

the real world adversary A. We thus try to construct a simulator

Sctxt for F ctxt
CGKA

that internally executes S for FCGKA. Using the

description of S provided in Hashimoto et al. [36], the hope is to

recycle all the proofs provided by them (which spanned 30 pages!).

At a high level, during the hybrids where the leakage functions do

not hide any static metadata, Sctxt can use knowledge of the group

encryption key to encrypt whatever non-encrypted proposals and

commits S outputs, and decrypt whatever S inputs to perform a

process. This allows us to recycle all the proofs that ignore the secu-

rity of the static metadata. We then gradually modify the definition

of the leakage functions to arrive at our ideal functionality F ctxt
CGKA

.

In the final hybrid, Sctxt no longer knows the group encryption

key for those epochs where safe is true, and F ctxt
CGKA

(roughly) takes

care of generating random encryption of a proposal and commit.

While the high-level idea of recycling the proof of Hashimoto

et al. [36] sounds straightforward, it turns out to be easier said

than done. The non-triviality comes from the fact that the history

graph created by F ctxt
CGKA

while using the null-leakage function is

not identical to those created by FCGKA — it is only almost identical.
As explained earlier, our new history graph uses the semantics to

identify the nodes and captures settings unique to F ctxt
CGKA

. Since

all the security arguments boil down to how the predicate safe
is defined over the history graph constructed during the security

proof, it is not clear how to relate the proof of Hashimoto et al. to

ours. To this end, we define the notion of isomorphisms of history
graphs so that a security proof translates within the same class of

history graphs. At a high level, two history graphs are isomorphism

if the symbolic representation of the group evolution is identical.

We prove that the two history graphs created in F ctxt
CGKA

and FCGKA
are isomorphic.

Polynomial security loss. We like to point out that our security

proof only admits a polynomial security loss. This is in contrast to

Hashimoto et al. [36] that admitted an exponential security loss.
11

Themain reason for this disparity is becauseChainedCmPKEctxt

captures a larger part of a CGKA compared to Chained CmPKE. As
explained earlier, Chained CmPKE does not use the group secret

key to encrypt proposals and commits, while Chained CmPKEctxt

does. Effectively, in the former, an adversary was able to adap-
tively corrupt the group secret key while not trivially winning the

security game. However, once the group secret key is used in a

higher-level protocol as in Chained CmPKEctxt, this is no longer

the case. An adversary capable of corrupting the group secret key

after seeing the ciphertext can trivially win the security game.
12

Since the exponential security loss in Hashimoto et al. [36] was

due to the adaptivity of the adversary, we can remove this loss by

naturally restricting such adversaries in our UC-security model.

Remark 1 (Adversary-controlled randomness). In case of
corruption, [12, 36] allow the adversary A in FCGKA to set the ran-
domness to be used by the corrupted member id by altering the value
RandCorr[id]. While our ideal functionality F ctxt

CGKA models such
strong adversaries, we restrict the adversary in our security proof
to never alter the randomness for simplicity and better readability.

11
We note that they were able to achieve a polynomial security loss relying on a

stronger form of multi-recipient PKE secure against adaptive corruptions.

12
We note that this problem may theoretically be solved using non-committing encryp-

tions [22], but we did not consider them as a viable option as it will add a noticeable

overhead in efficiency.

6

How to Hide MetaData in MLS-Like Secure Group Messaging:
Simple, Modular, and Post-Quantum CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

Recent definitions [9, 11] also intentionally disregard this type of at-
tack.13 We leave it as future work to incorporate adversary-controlled
randomness into the proof.

4 CONSTRUCTING METADATA-HIDING
CGKA

We now construct a simple and modular CGKA construction that

enables us to secure the 3rd layer (i.e., dynamic metadata). This

results in the first metadata-hiding CGKA. Technically, we con-

struct a wrapper protocol𝑊mh
specifically taking care of the 3rd

layer security in the F ctxt
CGKA

-hybrid model. Specifically,𝑊mh
can

be wrapped around any CGKA Πctxt that UC-realizes F ctxt
CGKA

and

bootstraps Πctxt into a metadata-hiding CGKA.

The formal security proof of our metadata-hiding CGKA is de-

ferred to Sec. 5, where we propose a new UC security model captur-

ing the 3rd layer. We refer the readers to App. E for the full detail

on the construction of𝑊mh
. Below, we provide an overview of our

protocol.

4.1 Goal of the Wrapper Protocol𝑊 mh

To claim that CGKA secures the 3rd layer, our goal is to informally

construct a wrapper protocol𝑊mh
with the following properties:

(1) Anonymous upload.A group member id can anonymously

upload a proposal p or a commit (c0, ®c) to the server.

(2) Anonymous download. A group member id can anony-

mously download a commit (c0, ®c) from the server.

(3) Unlinkability. A member performing multiple uploads and

downloads remains unlinkable from the server.

(4) Group authentication. Only members of the group — ex-

cluding the honest server — can upload to and download

from the server.

Here, unlinkability (Item (3)) is a strictly stronger notion compared

to anonymity (Item (1)). Even if the member remains anonymous,

some protocol may allow the server to link whether two uploads

came from the same member. We also note that Item (4) is only

relevant when the server is honest — a malicious server can always

allow a non-member to perform an upload or a download on behalf

of the group.

A wrapper protocol 𝑊mh
satisfying the above conditions is

sufficient to bootstrap any CGKA that UC-realizes F ctxt
CGKA

into

a metadata-hiding CGKA. However, if the underlying CGKA sup-

ports selective downloading, such as Chained CmPKE, Item (2) fails

to provide the same efficiency offered by the underlying selective

downloading CGKA. We thus strengthen Item (2) as follows.

(2
+
) Anonymous selective download. A group member id can

anonymously and selectively download a partial commit

(c0, ĉid) from the server.

Specifically, the wrapper protocol𝑊mh
allows the download cost

to remain independent of the group member size in case a selective

downloading CGKA is internally used.

Finally, even if the group secret key becomes compromised, we

want all the above properties to hold again once the group state is

healed. Namely, we seek a protocol with the following property.

13
Alwen et al.[9] does not allow adversaries to manipulate randomness used for

symmetric key encryption.

(5) Compromise Resilience.𝑊mh
inherits the FS+PCS guar-

antees offered by the underlying CGKA UC-realizing F ctxt
CGKA

.

Insufficiency of client-anonymized authenticated channel.
One natural idea is to use a client-anonymized authenticated chan-

nel such as a VPN or an anonymized proxy like Tor [1, 31]. While

such a channel solves Item (1) (and Item (2)), this alone cannot

solve Items (2
+
) to (5). For instance, when selective downloading

is performed, member id needs to specify its index in the group to

retrieve the partial commit (c0, ĉid). Even if index may not directly

leak id, the second time id performs a download on the same index,
it will break linkability (Item (3)). Moreover, since the client-side

is unauthenticated, it does not prevent external adversaries to per-

form a denial of service (DoS) attack on the group by uploading

garbage contents, thus contradicting Item (4). Recall here that the

server can no longer explicitly check if the uploaded contents come

from genuine group members since the static metadata including

the identity of the uploading member is hidden.

In summary, a client-anonymized authenticated channel alone

is not enough to hide dynamic metadata.

4.2 High Level Description of𝑊 mh

We provide an overview of our wrapper protocol𝑊mh
. The main

idea is to use the unique group secret key k exchanged among the

group to perform an efficient proof of membership to the server. To

make the presentation simple, we deliberately provide an informal

description of our protocol.

Below, we assume all parties have access to the ideal functionality

F ctxt
CGKA

. Moreover, we assume the party communicates with the

server via a client-anonymized authenticated channel, except when

a new member is retrieving a welcome message from the server.

Fig. 3a: Group registration. Assume party id0 wishes to create

a group of three members (id0, id1, id2). id0 first registers a new
empty group to the server. Informally, id0 invokes F ctxt

CGKA
on in-

put (Create) and initializes a new group identifier gid and a group

secret key k0 for epoch = 0. It then deterministically creates a group

specific signature key (gvk
0
, gsk

0
) ← KeyGen(1𝜅 ;PRF(k0, ‘auth’))

from the group secret key k0. We call this verification key gvk
0

as the group statement for epoch = 0. Party id0 then uploads the

pair (gid, gvk
0
) to the server.

14
Finally, the server creates a new

database for the group gid.

Fig. 3b: Initial proposal to add members. With the database

for gid set up on the server, id0 next adds id1 and id2 to the group.

Specifically, id0 invokes F ctxt
CGKA

on input (Propose, ‘add’-id𝑖) and
generates an add proposal p𝑖 for 𝑖 ∈ [2] . To upload p𝑖 on the

server, id0 proves that it is a member of the group gid by essentially

executing an identification protocol with the server. The server

sends a random challenge ch𝑖 ← {0, 1}𝜅 and id0 creates a signature
𝜎𝑖 ← Sign(gsk

0
, ch𝑖). The server verifies that 𝜎𝑖 is a valid signature

with respect to the group statement gvk
0
at epoch = 0. If so, it adds

p𝑖 to the database. Due to the unforgeability of the signature scheme,

no party without the group signing key gsk
0
can impersonate a

group member.

14
Our protocol𝑊 mh

does not prevent a malicious id0 from registering multiple groups.

As explained in Sec. 1.2, one possible way to thwart such a DoS attack would be to use

anonymous credentials [26].

7

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Keitaro Hashimoto, Shuichi Katsumata, and Thomas Prest

(gid, 0)
gvk

0

Propose

⊥
Commit
⊥

id0

gid,
gvk

0

(a) Group registration

(gid, 0)
gvk

0

Propose

p1
p2

Commit
⊥

id0

ch𝑖
p𝑖 , 𝜎𝑖

(b) Initial proposals from id0

Figure 3: Creation of a group by a party id0. The three-part box
represents the group state at a given epoch, as stored on the
server. The top box stores in the clear the group identifier gid,
epoch and group statement gvk

0
. The middle box stores the

(encrypted) proposals created during the epoch. The bottom
box stores the (encrypted) commit message which concluded
this epoch, if it exists.
To prove membership, the server sends a challenge ch𝑖 and
id0 responds with a signature 𝜎𝑖 (Fig. 3b). The contents are
exchanged over a client-anonymized authenticated channel.

(gid, 0)
gvk

0

Propose

p1
p2

Commit
⊥

(gid, 0)
gvk

0

Propose

p1
p2

Commit

c0 ĉ1

(gid, 1)
gvk

1

Propose

⊥
Commit
⊥

id0

ch
gvk

1
,

(c0, ĉ1),
𝜎

Commit

Next epoch

Figure 4: An initial commit made by the group creator id0.
The server freezes the state of the current epoch = 0, and
initializes a new epoch in the database.

Fig. 4: Initial commit to execute initial proposals. To create a

new group with members id1 and id2, id0 must commit the propos-

als ®p = (p𝑖)𝑖∈[2] . It first invokes F ctxt
CGKA

on input (Commit, ®p) and
generates (c0, ĉ0, ®𝑤 = (𝑤𝑖)𝑖∈[2])15 and (roughly) updates the group
secret key k1 for the next epoch = 1. Similar to the group registra-

tion phase, id0 creates a group statement gvk
1
for epoch = 1. To

upload the commit (c0, ĉ0), id0 performs the same identification

protocol as in Fig. 3b to prove that he is indeed a member of the

group gid. If the identification protocol succeeds, the server stores

15
Note that id0 must process the commit (c0, ĉ1) to move to the next epoch = 1.

the commit on the database and further creates a new column for

the next epoch = 1.

Finally, id0 uploads the welcome messages ®𝑤 to the server. The

welcome messages are stored on a party-dependent database and

work identically to F ctxt
CGKA

. In particular, id1 and id2 can retrieve

𝑤1 and 𝑤2, respectively, from the server and execute F ctxt
CGKA

on

input (Join,𝑤𝑖) to have the same group state as id0. Effectively,
they become a member of the group gid at epoch = 1.

(gid, 1)
gvk

1

Propose

p3

Commit
⊥

(gid, 1)
gvk

1

Propose

p3

Commit

ĉ1
c0 ĉ2

ĉ3

id1

gvk
2
,

(c0, ®cperm),
𝜎

id2

index,
𝜎

(c0, ĉindex),
p3

Commit

Figure 5: Left: a commit sent by id1. Right: a subsequent
process made by id2. Member-dependent commits ®cperm :=

(̂c1, ĉ2, ĉ3) are randomly permuted and id2 specifies an index
to fetch the commit from the server. Challenges sent by the
server are omitted for readability.

Commits without selective downloading. Now that id1 and id2
joined the group gid at epoch = 1 (i.e., share the same group secret

key k1), they can upload proposals and commits to the database

defined with respect to the group statement gvk
1
.

We now explain the structure of a commit message when the

group has more than one member. Assume some member made an

update proposal p3, and id1 wishes to commit this proposal (left

half of Fig. 5). Then, following the same procedure as the initial

commit, id1 invokes F ctxt
CGKA

on input (Commit, p3) and generates

(c0, ®c = (̂c𝑖)𝑖∈[3]), along with an updated group statement gvk
2

for the next epoch = 2. If selective downloading is not performed,

then id1 can simply upload (c0, ®c) to the server. The server then

initiates a new column for epoch = 2 and the other members can

anonymously download the entire commit from the server (by

performing the aforementioned identification protocol).

Issues with naive selective downloading. Unfortunately, if se-
lective downloading is naively applied, the above method leaks the

access pattern of group members.

Recall that when selective downloading is performed in F ctxt
CGKA

,

a member sends an index and receives the corresponding member-

dependent commit ĉindex from the server. When a member selec-

tively downloads commit messages relative to two distinct epochs,

they send the same index for both epochs. The server can infer that

both requests were made by the same party, contradicting Item (3).

Even worse, suppose that the group secret key, and thus, the

group member list is compromised. Although the group secret key

may heal after PCS of F ctxt
CGKA

kicks in, the access pattern will never

8

How to Hide MetaData in MLS-Like Secure Group Messaging:
Simple, Modular, and Post-Quantum CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

heal; the server who learned the member-index correspondence
can permanently break anonymity when selective downloading

is performed by simply looking at the same index used at every

epoch, contradicting Items (2
+
) and (5).

Commits with oblivious selective downloading. While the

problem exposed above is known to be solvable using relatively

complex tools such as private information retrieval (PIR) [27], we

provide a much simpler solution using a pseudorandom permu-

tation PRP by taking advantage of the fact that selective down-

loading is performed by each group member once per epoch. Con-
tinuing with our above example, when id1 generates a commit

(c0, ®c = (̂c𝑖)𝑖∈[3]), it further deterministically generates a PRP key

permKey← PRF(k1, ‘perm’) which defines a permutation over the

group size, which is [3] = { 1, 2, 3 } for our example. It then creates a

permutedmember dependent commit ®cperm so that ĉ𝑖 is placed at en-
try PRP(permKey, 𝑖) ∈ [3]. Finally, id1 uploads (gvk2, (c0, ®cperm))
to the server by performing the identification protocol using gsk

1
.

When id2 performs a selective download to retrieve the pro-

posal and (partial) commit from the server, it computes its per-

muted index = PRP(permKey, 2), where id2 generates an identical

permKey as id1. It performs an identification protocol using gsk
1
,

sends index, and retrieves (c0, ĉindex) and the proposal p3 from the

server. This is illustrated in the right half of Fig. 5. id1 can then

invoke F ctxt
CGKA

on input (Process, (c0, ĉindex), p3) and move to the

next epoch = 2.

Observe that a member never performs a selective download

more than once per epoch. This is the main reason why a PRP
suffices — the access would have been linkable if selective down-

loading was performed more than twice per epoch using the same

PRP key. Moreover, since the group secret key is updated at each

epoch, the PRP key is also updated, thus satisfying FS and PCS

(Item (5)).

Remark 2 (Non-Interactive Membership Identification).

We provided a challenge-response type interactive identification pro-
tocol to prove group membership. By allowing the server to perform
additional checks on the database and further reasonably weakening
the security guarantee (i.e., Item (4) is guaranteed only for uploads),
we are able to make the protocol completely non-interactive. At a high
level, the party simply needs to sign the proposal or commit (rather
than a challenge message) to upload, and perform no membership
identification to download. The full detail is provided in App. E.2.

5 FORMAL MODEL FOR METADATA-HIDING
CGKA

We define a UC security model capturing the security of the entire

1st, 2nd & 3rd layers (i.e., group secret keys, static and dynamic
metadata) by defining a new ideal functionality Fmh

CGKA
. Any CGKA

UC-realizing Fmh
CGKA

is provably a metadata-hiding CGKA.

Reusing most of the description of F ctxt
CGKA

handling the 1st and

2nd layers, the description of Fmh
CGKA

can focus mainly on the 3rd

layer. Our model succinctly captures all the properties explained in

Sec. 4.1, Items (1) to (5). We then show that the wrapper protocol

𝑊mh
presented in the previous section UC-realizes Fmh

CGKA
in the

F ctxt
CGKA

-hybrid model. The full details of this section is provided in

App. D. Below, we provide an overview of our idea.

𝒜

𝒵

id!

ℱ"#$%&'('

Sv id)…

Wrapper 𝑊!"

ℱ"#$%*+

𝒜

𝒵

id!

ℱ"#$%&'('

Sv id)…

Wrapper 𝑊!"

ℱ"#$%*+

𝒜′

Figure 6: (Left) metadata-hiding CGKA Πmh
CGKA when the

server Sv is honest and (Right) when Sv is malicious. The red
dotted box denotes the entire protocol Πmh

CGKA, where it is fur-
ther decomposed as a combination of the wrapper protocol
𝑊mh and ideal functionality F ctxt

CGKA. The red shaded region
denotes that Sv is corrupted and that (A, Sv) are viewed as a
single adversary A′. In this case,𝑊mh is ignored and Πmh

CGKA
degenerates to a UC-realization of F ctxt

CGKA.

5.1 Modeling an Honest but Curious Sever
In previous constructions of CGKA, the server was assumed to be

always malicious. This is for instance captured in the ideal func-

tionalities FCGKA and F ctxt
CGKA

by observing that the Commit and

Process take as input arbitrary proposals and commits — not just

those created by the honest group members.

While assuming the server to be always malicious allows to

capture a strong level of security against group secret keys and

static metadata, this is far too inflexible for our use case. Recall

Sec. 4.1, Item (4). To properly model that any non-member cannot

upload and download from the server on behalf of the group, we

must model an honest but curious server — a server that honestly

follows the protocol but tries to learn as much metadata as possible.

To this end, we explicitly incorporate a server into our model as

depicted in Fig. 6. We allow the server to be in two states: honest
16

or corrupt. When the server is honest, we are able to properly

model Sec. 4.1, Item (4). Otherwise, since a malicious server can

arbitrarily choose to accept or reject the identification protocol

executed by the wrapper protocol𝑊mh
,𝑊mh

does not provide any

meaningful functionality. In particular, our metadata-hiding CGKA

Πctxt
CGKA

degenerates to offer the same functionality as F ctxt
CGKA

.

5.2 UC Security Model for Dynamic Metadata
As already mentioned, the new ideal functionality Fmh

CGKA
inher-

its all functionalities offered by F ctxt
CGKA

. Fmh
CGKA

comes with seven

additional functionalities:

• RegisterGroup,
• PublishProposal, FetchProposals,
• PublishCommit, FetchCommit,
• PublishWelcome, FetchWelcome.

As the name indicates, Publish-∗ (resp. Fetch-∗) is invoked to up-

load (resp. download) a proposal, commit, or welcomemessage from

16
We drop “but curious” for simplicity.

9

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Keitaro Hashimoto, Shuichi Katsumata, and Thomas Prest

the server. These functions are mainly invoked during an execu-

tion of Create, Propose, Commit, Process, and Join. For instance,
when Commit is invoked, the member first runs FetchProposals to
retrieve the proposals ®p from the server and invokes F ctxt

CGKA
on in-

put (Commit, ®p). It then uploads the commit and welcome message

output by F ctxt
CGKA

using PublishCommit.
These functions are defined differently depending on (i) whether

the calling party is an honest group member or an adversary,
17

and

(ii) whether the server is honest or malicious. As explained above,

if the server is malicious, then we let the adversary A (i.e., server)

decide whether Publish-∗ or Fetch-∗ succeeds. In this case, Fmh
CGKA

becomes functionally identical to F ctxt
CGKA

, modulo some syntactical

difference due to the inclusion of the server into the model.

Otherwise, if the server is honest, then Fmh
CGKA

captures the cor-

rectness and security guarantees. For correctness, if the calling

party is a group member and the group statement for the next

epoch was honestly generated, then the functionality demands the

server to accept the upload or download. On the other hand, for

security, if the calling party is the adversary, then we require the

server to reject the upload or download as long as the predicate

safe at that epoch is true. That is, if the group secret key is not

compromised, then the adversary should not be able to upload and

download on behalf of the group.

Additionally, the database stored by the server (see Figs. 3 to 5) is

modeled in Fmh
CGKA

by two lists PropDB andComDB, eachmaintain-

ing the proposals and commit for group gid at epoch. Fmh
CGKA

also

models the permutation-based selective downloading explained

in Sec. 4.2 by an ideal (helper) function *permute-commit. Finally,
due to the already complex nature of the metadata-hiding CGKA,

we did not model adversarially controlled randomness in Fmh
CGKA

.

We leave this as an important future work.

5.3 Proof of Dynamic Metadata-Hiding CGKA
We prove that the wrapper protocol𝑊mh

UC-realizes the metadata-

hiding ideal functionality Fmh
CGKA

in the F ctxt
CGKA

-hybrid model. The

full proof is provided in App. E.3.

The proof is relatively simple and modular since we defined

𝑊mh
in the F ctxt

CGKA
-hybrid model. We can in essence ignore all

the description of Fmh
CGKA

that relates to the 1st and 2nd layers’

correctness and security since the same checks can be handled by

the simulatorS internally simulating F ctxt
CGKA

. Specifically, our proof

only needs to focus on the 3rd layer of correctness and security.

The proof is standard and consists of invoking the security of the

pseudorandom permutation and signature scheme.

6 INSTANTIATION AND EFFICIENCY
We now discuss how to instantiate𝑊mh

and Chained CmPKEctxt.
We target the so-called “NIST Level I”

18
, which informally states

that breaking the protocol is no easier than key-recovery on a block

cipher with a 128-bit key (e.g. AES128). This provides a meaningful

baseline to discuss post-quantum security and ignoring quantum

17
In our security definition (in App. D), we use Publish-∗-Adv and Fetch-∗-Adv to

indicate that the calling party is the adversary.

18
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-

cryptography-standardization/evaluation-criteria/security-(evaluation-criteria)

Table 2: Comparison of selected mPKEs. An mPKE ciphertext
has the form

(
ct0, (ĉtid)id∈[𝑁]

)
when uploaded, and

(
ct0, ĉtid

)
when downloaded by id. All sizes are in bytes.

mPKE Reference |ek| |ct0 | |ĉtid |
ElGamal-based [43] + [40] 32 32 32

SIKEp434-based [36] 330 330 16

Ilum512 [36] 768 704 48

Bilbo640 [36] 10240 10240 24

attacks corresponds to a classical security level of 128 bits. Given a

cryptographic object x, we note |x| its size in bytes.

6.1 Instantiation
Themain cryptographic primitives used in our protocols are: (a) two

signature schemes SIG and SIG′, (b) a multi-recipient PKE mPKE,
and finally (c) symmetric primitives: a pseudo-random function

PRF, a symmetric encryption scheme SKE and a pseudo-random

permutation PRP.

Multi-recipient PKE. For pre-quantum security, one may combine

Kurosawa’s multi-recipient variant [43] of ElGamal with the trans-

form of [40], whose decomposability property makes it amenable

to the selective downloading performed by Chained CmPKEctxt.
For post-quantum security, one may readily use one of the mPKEs
proposed in [36]: Ilum512, Bilbo640 or a SIKEp434-based mPKE.
For completion, we recall their performance profiles in Tab. 2.

Signature schemes.We choose signature schemes that comple-

ment our chosen mPKEs nicely, either by having similar perfor-

mances, being based on similar assumptions, or both:

• The ECDSA standard is based on similar assumptions as of

the ElGamal-based mPKE, and it has a similar performance

profile as well.

• TheNIST PQCfinalist Falcon [53] complements our SIKEp434-
based mPKE, as they both have small communication costs.

• The NIST PQC finalist Dilithium [44] is based on Module-

LWE (plus Module-SIS), just like Ilum512.
• SPHINCS+ [38] and Bilbo640 are both based on assumptions

perceived as conservative (hash-based assumptions and un-

structured LWE), and they both have comparatively larger

communication costs than other schemes.

For simplicity, we consider that SIG and SIG′ use the same scheme,

but using distinct schemes may lead to interesting trade-offs.

Pseudo-random permutation. We require a PRP in order to

permute the set of [𝑁] group members. There are at least two

viable approaches:

• Shuffling. One may use a shuffling algorithm whose random-

ness is provided by passing permKey into a PRF. If cache
attacks on group members’ devices are not a concern, the

Fisher-Yates shuffle is a good choice since it is simple, per-

forms 𝑁 − 1 swaps, and its entropy consumption is opti-

mal. If cache attacks are a concern, one may need to use

so-called oblivious algorithms. For example, with the Thorp

10

https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/evaluation-criteria/security-(evaluation-criteria)
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/evaluation-criteria/security-(evaluation-criteria)

How to Hide MetaData in MLS-Like Secure Group Messaging:
Simple, Modular, and Post-Quantum CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

shuffle [50], each member may compute their permuted in-

dex in time 𝑂 (log𝑁).
• Sorting. This approach assigns to each member id a pseudo-

random value 𝑟id = H(permKey, id), then sorts the id’s ac-
cording to the 𝑟id’s. The sorting step can be done obliviously

in time 𝑂 (𝑁 log
2 𝑁) using sorting networks, for example,

Batcher networks. Assuming H is collision-resistant, this

provides a PRP over [𝑁].
While the solutions proposed above are not optimal when used

in *permuted-commit-index (each group member needs to shuf-

fle/sort all indices before finding their position), we expect them

to be significantly less costly than public-key cryptographic opera-

tions, even for concretely large groups.

6.2 Efficiency
We now study the impact of 𝑊mh

on bandwidth efficiency, by

applying it to Chained CmPKEctxt. The results are summarized in

Tab. 3, with the overhead of𝑊mh
represented in bold red font (+X).

Let us make two observations. First,𝑊mh
adds the same over-

head to any CGKA protocol realizing the ideal functionality F ctxt
CGKA

(e.g., our Chained mPKEctxt andMLSCiphertext19). Second, as is
obvious in Tab. 3, the bandwidth overhead is added only in the

upload direction, since the additional signatures serve to convince

the server that a user is a legitimate group member.

For a more concrete perspective on the numbers provided in

Tab. 3, we study the impact of applying𝑊mh
overChainedCmPKEctxt,

when these protocols are instantiated with the fourmPKE-signature
pairs selected in Sec. 6.1. The results are given in Tab. 4. For our

examples,𝑊mh
increases the bandwidth cost of Propose-‘upd’,

Propose-‘add’, Propose-‘rem’, Commit, Process and application

messages by at most 44%, 63%, 100%, 57%, 39% and 100%, respec-

tively.
20

We believe this to be a very reasonable overhead if pro-

tecting metadata is considered important.

7 LIMITATION OF EFFICIENT
METADATA-HIDING CGKA

We conclude this work by discussing some inherent limitations of

metadata-hiding CGKAs. Our model and solution hide metadata

from messages but allow leaking message size. This may reveal

information about the structure and activity of the group. While

remaining informal, our discussion highlights that the nature and

extent of this information depend on the inner workings of the

CGKA, as well as the precise topology of the group at a given time

(especially for tree-based CGKAs).

7.1 Chained CmPKE and TreeKEM
Wefirst discussChainedCmPKE [36], aswell as variants of TreeKEM
without server assistance [8, 9, 12, 14, 41], meaning that the server

forwards messages to group members without editing them.

Leakage from proposal messages. When the size of proposal

messages depends on their type, these messages leak the proposal

19
Although no formal proof exists, it is believed that MLSCiphertext realizes Fctxt

CGKA
.

20
For simplicity, numbers for Commit and Process in Tab. 4 consider an idealized

setting where no proposal was made during the last epoch. In practice, this is not the

case and the bandwidth overhead of𝑊 mh
for Commit and Process will be even lower

in percentage.

type (i.e., ‘upd’, ‘add’, ‘rem’). For Chained CmPKE, this is evident
from Tab. 4. Even though this can be fixed by padding, we note that

at least for Chained CmPKE, commit messages subsequent to a

successful ‘add’ (resp. ‘rem’) will increase (resp. decrease) by |ĉtid |
bytes. For TreeKEM, a less obvious yet similar correlation exists.

On the bright side, the size of proposals is independent of the group

size and the sender’s identity.

Leakage from commit messages.

Chained CmPKE [36]. The size of an uploaded commit message is

affine in the group size 𝑁 . Thus, the server can infer 𝑁 from commit

messages. Chained CmPKE allows selective downloading but the

wrapper𝑊mh
hides the index of each party-dependent message

by randomizing indices via per-epoch random permutation. Thus,

from the server’s point of view, indices look random.

TreeKEM [8, 9, 12, 14]. The number of PKE ciphertexts in a com-

mit message depends on the topology of the ratchet tree and the

sender’s position in this tree, therefore the size of a commit mes-

sage can leak information about both elements. We provide two

examples.

First, suppose that the tree is full (i.e., no blank node) but the

group size is not a power of two. Since TreeKEM uses left-balanced

binary trees, parties assigned to leaves “at the left” of the tree will

send longer commit messages than the ones “on the right”. Hence

the server can easily partition the set of parties into two groups

depending on the length of commit messages.

Second, we consider the tree in Fig. 7, which has some blank

nodes. In this tree, the number of cryptographic materials sent by

each party is as follows: parties 1 and 2 (resp. 3 and 4, resp. 5 and

6, resp. 7) send 3 encryption keys + 5 ciphertexts (resp. 3 + 4, resp.
3 + 3, resp. 2 + 2 encryption keys and ciphertexts).

Tainted TreeKEM [41]. In this variant of TreeKEM, commit mes-

sages contain cryptographic materials related to tainted nodes,

nodes managed by a party other than on the direct path. Message

size becomes larger if the sender manages more tainted nodes.

(a) The ratchet tree

7

654321

(b) Elements sent by User 1

7

654321

(c) Elements sent by User 4

7

654321

(d) Elements sent by User 7

7

654321

Figure 7: Example of the TreeKEM ratchet tree with blank
nodes. The numbers indicate party identities. Figs. 7b to 7d:
sending encryption keys and ciphertexts when party 1,
4 or 7 commits, respectively.

11

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Keitaro Hashimoto, Shuichi Katsumata, and Thomas Prest

Table 3: Bandwidth overhead of our wrapper𝑊mh applied to Chained CmPKEctxt, for a group of 𝑁 members in terms of public
key cryptography elements. The nominal bandwidth cost of Chained CmPKEctxt is written in normal font (X). The overhead of
𝑊mh is written in bold red (+X). U (resp. A, R) stands for the number of ‘upd’ (resp. ‘add’, ‘rem’) proposals published during the
last epoch.

Upload Download

Procedure |ek| |ct0 | |ĉtid | |sig| |svk| |ek| |ct0 | |ĉtid | |sig| |svk|
Propose-‘upd’ 1 2 (+1)
Propose-‘add’ 1 1 (+1) 1

Propose-‘rem’ 1 (+1)
Commit 1 1 N 2 (+2) (+1) U+A 2U+A+R A

Process (+1) U+A+1 1 1 2U+A+R+2 A

Applications messages 1 (+1)

Table 4: Concrete overhead of𝑊mh in terms of public key cryptography elements, when instantiated with: (a) ElGamal-mPKE
+ ECDSA (E+E), (b) SIKEp434-mPKE + Falcon (S+F), (c) Ilum512 + Dilithium (I+D), (d) Bilbo640 + SPHINCS+ (B+S). We assume
a group of 𝑁 = 256members, and numbers for Commit and Process assume no proposal was made during the last epoch. The
nominal bandwidth cost of Chained CmPKEctxt is written in normal font (X), and the overhead of𝑊mh is written in bold red
(+X). All sizes are in bytes.

Procedure E+E S+F I+D B+S

Propose-‘upd’ 160 +64 1 662 +666 5 608 +2 420 44 416 +17 088
Propose-‘add’ 128 +64 1 893 +666 4 500 +2 420 27 360 +17 088
Propose-‘rem’ 64 +64 666 +666 2 420 +2 420 17 088 +17 088

Commit 8 384 +160 6 088 +2 229 18 600 +6 152 60 800 +34 208
Process 224 +64 2 008 +666 6 360 +2 420 54 680 +17 088

Applications messages 64 +64 666 +666 2 420 +2 420 17 088 +17 088

Leakage from welcome messages. In both protocols, welcome

messages leak the receiver’s identity, the key package’s hash, and

the group size. Note that the receiver’s identity must be in the clear

for the server to deliver welcome messages. Key package hashes are

used by the receivers to identify which decryption key is necessary

to process the welcome message.

First of all, the server always gets to know when a welcome

message was fetched. In addition, if the welcome message did not

hide the dynamic metadata (i.e., uploader’s identity), then the server

can infer that the party creating the welcome message and the

party fetching it belong to the same group. Since groups are created

by adding new members through a welcome message, this minor

leakage of metadata can be used to trace the entire group member.

However, even if the welcome message hides the dynamic meta-

data, the server may still be able to link welcome messages to a

specific group in some scenarios. For example, assume a party at

an insecure epochcur commits an add proposal and moves to a se-

cure epochnext. Using a client-anonymized authenticated channel

to upload the welcome message, the party uploading the welcome

message remains anonymous, thus protecting against the above

attack. However, since the server gets to see the key package in-

cluded in the add proposal issued at the insecure epochcur, the
server can link this key package to the key package hash included

in the welcome message to infer that the new member joins the

group related to epochcur. In particular, while the key package hash

included in the welcome message is good for efficiency, it may have

non-trivial side effects.

A simple way to prevent such information leakage is to remove

key package hashes from welcome messages. However, this would

require recipients to try decrypting with all their registered decryp-

tion keys since they no longer can determine which decryption key

can be used to decrypt the received welcome message. Finally, we

note that welcome messages will always leak the size of the group

to which the party was newly added. This is because a welcome

message in essence sends all the current group states to the newly

added party.

7.2 Server-Aided Variants of TreeKEM
We discuss recent efficient variations of TreeKEM [5, 11]. These

allow the server to perform special tasks, e.g., editing signatures

or ratchet trees in addition to delivering messages. They improve

efficiency by revealing metadata to the server. Devising metadata-

hiding variants of these schemes would likely require devising ways

to perform these editing operations in an oblivious way, similarly

to the PRP-based solution, we proposed for Chained CmPKEctxt.

SAIK21 [11]. This TreeKEM variant uses reducible signatures, a vari-

ant of redactable signatures, to allow parties to selectively download

parts of commit messages while still guaranteeing their validity

with the same signature that was initially uploaded by the sender.

This improves the overall communication cost. However, the server

12

How to Hide MetaData in MLS-Like Secure Group Messaging:
Simple, Modular, and Post-Quantum CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

needs to know the identities of both the sender and receiver in

order to reduce the commit message before forwarding it to the

receiving party. In SAIK, this reduction is more involved than the

selective downloading of Chained CmPKE. Even assuming that

the reduction itself can be performed obliviously, the size of the

reduced message depends on the positions of both the sender and

receiver, so it would still leak information about both parties.

CoCoA22 [5]. This variant allows the server to merge multiple com-

mit messages for the purpose of reducing communication costs.

The server keeps the public part of the group state and creates the

next group state by merging concurrently issued commit messages.

Then, it forwards to each group member the part of the new state

they need. This results in 𝑂 (log𝑁) upload and download costs,

and a 𝑂 (log2 𝑁) total cost. However, the server needs to know the

public part of group states, which in particular includes the group

member list.

One can say that these schemes improve efficiency by giving

more information to the server. In other words, there is a trade-

off between efficiency and privacy. We view it as an interesting

research direction to construct more efficient (and practical) CGKA

protocols while still protecting metadata.

REFERENCES
[1] [n.d.]. Orbot: Proxy with Tor. https://guardianproject.info/apps/org.torproject.

android/ https://guardianproject.info/apps/org.torproject.android/.

[2] 2018. Technology preview: Sealed sender for Signal. https://signal.org/blog/

sealed-sender/ https://signal.org/blog/sealed-sender/.

[3] 2019. Technology Preview: Signal Private Group System. https://signal.org/

blog/signal-private-group-system/ https://signal.org/blog/signal-private-group-

system/.

[4] Ange Albertini, Thai Duong, Shay Gueron, Stefan Kölbl, Atul Luykx, and Sophie

Schmieg. 2022. How to Abuse and Fix Authenticated Encryption Without Key

Commitment. To Appear at USENIX 2022.

[5] Joël Alwen, Benedikt Auerbach, Miguel Cueto Noval, Karen Klein, Guillermo

Pascual-Perez, Krzysztof Pietrzak, and Michael Walter. 2022. CoCoA: Concurrent

Continuous Group Key Agreement. In EUROCRYPT 2022, Part II (LNCS). Springer,
Heidelberg, 815–844. https://doi.org/10.1007/978-3-031-07085-3_28

[6] Joël Alwen, Margarita Capretto, Miguel Cueto, Chethan Kamath, Karen Klein,

Ilia Markov, Guillermo Pascual-Perez, Krzysztof Pietrzak, Michael Walter, and

Michelle Yeo. 2021. Keep the Dirt: Tainted TreeKEM, Adaptively and Actively

Secure Continuous Group Key Agreement. In 2021 IEEE Symposium on Security
and Privacy (S&P). IEEE Computer Society, Los Alamitos, CA, USA, 596–612.

https://doi.org/10.1109/SP40001.2021.00035

[7] Joël Alwen, Sandro Coretti, and Yevgeniy Dodis. 2019. The Double Ratchet:

Security Notions, Proofs, and Modularization for the Signal Protocol. In EURO-
CRYPT 2019, Part I (LNCS, Vol. 11476), Yuval Ishai and Vincent Rijmen (Eds.).

Springer, Heidelberg, 129–158. https://doi.org/10.1007/978-3-030-17653-2_5

[8] Joël Alwen, Sandro Coretti, Yevgeniy Dodis, and Yiannis Tselekounis. 2020. Secu-

rity Analysis and Improvements for the IETF MLS Standard for Group Messaging.

In CRYPTO 2020, Part I (LNCS, Vol. 12170), Daniele Micciancio and Thomas Ris-

tenpart (Eds.). Springer, Heidelberg, 248–277. https://doi.org/10.1007/978-3-030-

56784-2_9

[9] Joël Alwen, Sandro Coretti, Yevgeniy Dodis, and Yiannis Tselekounis. 2021. Mod-

ular Design of Secure Group Messaging Protocols and the Security of MLS. In

ACM CCS 2021, Giovanni Vigna and Elaine Shi (Eds.). ACM Press, 1463–1483.

https://doi.org/10.1145/3460120.3484820

[10] Joël Alwen, Sandro Coretti, Daniel Jost, and Marta Mularczyk. 2020. Continuous

Group KeyAgreement with Active Security. In TCC 2020, Part II (LNCS, Vol. 12551),
Rafael Pass and Krzysztof Pietrzak (Eds.). Springer, Heidelberg, 261–290. https:

//doi.org/10.1007/978-3-030-64378-2_10

[11] Joël Alwen, Dominik Hartmann, Eike Kiltz, and Marta Mularczyk. 2021. Server-

Aided Continuous Group Key Agreement. Cryptology ePrint Archive, Report

2021/1456. https://eprint.iacr.org/2021/1456.

21SAIK stands for Server-Aided Insider-Secure TreeKEM.

22CoCoA stands for COncurrent COntinuous group key Agreement.

[12] Joël Alwen, Daniel Jost, and Marta Mularczyk. 2022. On the Insider Security

of MLS. In CRYPTO 2022, Part II (LNCS). Springer, Heidelberg, 34–68. https:

//doi.org/10.1007/978-3-031-15979-4_2

[13] Manuel Barbosa and Pooya Farshim. 2007. Randomness reuse: Extensions and

improvements. In IMA International Conference on Cryptography and Coding.
Springer, 257–276.

[14] Richard Barnes, Benjamin Beurdouche, Jon Millican, Emad Omara, Katriel Cohn-

Gordon, and Raphael Robert. 2022. The Messaging Layer Security (MLS) Protocol.
Internet-Draft draft-ietf-mls-protocol-13. Internet Engineering Task Force. https:

//datatracker.ietf.org/doc/html/draft-ietf-mls-protocol-13 Work in Progress.

[15] Mihir Bellare and Chanathip Namprempre. 2000. Authenticated Encryption:

Relations among notions and analysis of the generic composition paradigm. In

ASIACRYPT 2000 (LNCS, Vol. 1976), Tatsuaki Okamoto (Ed.). Springer, Heidelberg,

531–545. https://doi.org/10.1007/3-540-44448-3_41

[16] Karthikeyan Bhargavan, Richard Barnes, and Eric Rescorla. 2018. TreeKEM:
Asynchronous Decentralized KeyManagement for Large Dynamic Groups A protocol
proposal for Messaging Layer Security (MLS). Research Report. Inria Paris. https:

//hal.inria.fr/hal-02425247

[17] Karthikeyan Bhargavan, Benjamin Beurdouche, and Prasad Naldurg. 2019. Formal
Models and Verified Protocols for Group Messaging: Attacks and Proofs for IETF
MLS. Research Report. Inria Paris. https://hal.inria.fr/hal-02425229

[18] Thomas Brewster. 2022. Meet The Secretive Surveillance Wizards Help-

ing The FBI And ICE Wiretap Facebook And Google Users. Forbes.

https://www.forbes.com/sites/thomasbrewster/2022/02/23/meet-the-secretive-

surveillance-wizards-helping-the-fbi-and-ice-wiretap-facebook-and-google-

users/.

[19] Chris Brzuska, Eric Cornelissen, and Konrad Kohbrok. 2021. Cryptographic

Security of the MLS RFC, Draft 11. Cryptology ePrint Archive, Report 2021/137.

https://eprint.iacr.org/2021/137.

[20] Ran Canetti. 2001. Universally Composable Security: A New Paradigm for

Cryptographic Protocols. In 42nd FOCS. IEEE Computer Society Press, 136–145.

https://doi.org/10.1109/SFCS.2001.959888

[21] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. 2007. Universally

Composable Security with Global Setup. In TCC 2007 (LNCS, Vol. 4392), Salil P.
Vadhan (Ed.). Springer, Heidelberg, 61–85. https://doi.org/10.1007/978-3-540-

70936-7_4

[22] Ran Canetti, Uriel Feige, Oded Goldreich, and Moni Naor. 1996. Adaptively

Secure Multi-Party Computation. In 28th ACM STOC. ACM Press, 639–648. https:

//doi.org/10.1145/237814.238015

[23] Bjorn Carey. 2015. Stanford computer scientists show telephone

metadata can reveal surprisingly sensitive personal information.

https://news.stanford.edu/2016/05/16/stanford-computer-scientists-show-

telephone-metadata-can-reveal-surprisingly-sensitive-personal-information/.

[24] Melissa Chase, Sarah Meiklejohn, and Greg Zaverucha. 2014. Algebraic MACs

and Keyed-Verification Anonymous Credentials. In ACM CCS 2014, Gail-Joon
Ahn, Moti Yung, and Ninghui Li (Eds.). ACM Press, 1205–1216. https://doi.org/

10.1145/2660267.2660328

[25] Melissa Chase, Trevor Perrin, and Greg Zaverucha. 2020. The Signal Private

Group System and Anonymous Credentials Supporting Efficient Verifiable En-

cryption. In ACM CCS 2020, Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni

Vigna (Eds.). ACM Press, 1445–1459. https://doi.org/10.1145/3372297.3417887

[26] David Chaum. 1982. Blind Signatures for Untraceable Payments. In CRYPTO’82,
David Chaum, Ronald L. Rivest, and Alan T. Sherman (Eds.). Plenum Press, New

York, USA, 199–203.

[27] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. 1995. Private

Information Retrieval. In 36th FOCS. IEEE Computer Society Press, 41–50. https:

//doi.org/10.1109/SFCS.1995.492461

[28] Katriel Cohn-Gordon, Cas Cremers, Benjamin Dowling, Luke Garratt, and Dou-

glas Stebila. 2017. A Formal Security Analysis of the Signal Messaging Protocol.

In 2017 IEEE European Symposium on Security and Privacy (EuroS&P). 451–466.
https://doi.org/10.1109/EuroSP.2017.27

[29] Katriel Cohn-Gordon, Cas Cremers, and Luke Garratt. 2016. On Post-compromise

Security. In 2016 IEEE 29th Computer Security Foundations Symposium (CSF). 164–
178. https://doi.org/10.1109/CSF.2016.19

[30] Katriel Cohn-Gordon, Cas Cremers, Luke Garratt, Jon Millican, and Kevin Milner.

2018. On Ends-to-Ends Encryption: Asynchronous Group Messaging with Strong

Security Guarantees. In ACM CCS 2018, David Lie, Mohammad Mannan, Michael

Backes, and XiaoFeng Wang (Eds.). ACM Press, 1802–1819. https://doi.org/10.

1145/3243734.3243747

[31] Roger Dingledine, Nick Mathewson, and Paul F. Syverson. 2004. Tor: The Second-

Generation Onion Router. In USENIX Security 2004, Matt Blaze (Ed.). USENIX

Association, 303–320.

[32] Yevgeniy Dodis, Paul Grubbs, Thomas Ristenpart, and JoanneWoodage. 2018. Fast

Message Franking: From Invisible Salamanders to Encryptment. In CRYPTO 2018,
Part I (LNCS, Vol. 10991), Hovav Shacham and Alexandra Boldyreva (Eds.).

Springer, Heidelberg, 155–186. https://doi.org/10.1007/978-3-319-96884-1_6

[33] Pooya Farshim, Claudio Orlandi, and Razvan Rosie. 2017. Security of symmet-

ric primitives under incorrect usage of keys. IACR Transactions on Symmetric

13

https://guardianproject.info/apps/org.torproject.android/
https://guardianproject.info/apps/org.torproject.android/
https://guardianproject.info/apps/org.torproject.android/
https://signal.org/blog/sealed-sender/
https://signal.org/blog/sealed-sender/
https://signal.org/blog/sealed-sender/
https://signal.org/blog/signal-private-group-system/
https://signal.org/blog/signal-private-group-system/
https://signal.org/blog/signal-private-group-system/
https://signal.org/blog/signal-private-group-system/
https://doi.org/10.1007/978-3-031-07085-3_28
https://doi.org/10.1109/SP40001.2021.00035
https://doi.org/10.1007/978-3-030-17653-2_5
https://doi.org/10.1007/978-3-030-56784-2_9
https://doi.org/10.1007/978-3-030-56784-2_9
https://doi.org/10.1145/3460120.3484820
https://doi.org/10.1007/978-3-030-64378-2_10
https://doi.org/10.1007/978-3-030-64378-2_10
https://eprint.iacr.org/2021/1456
https://doi.org/10.1007/978-3-031-15979-4_2
https://doi.org/10.1007/978-3-031-15979-4_2
https://datatracker.ietf.org/doc/html/draft-ietf-mls-protocol-13
https://datatracker.ietf.org/doc/html/draft-ietf-mls-protocol-13
https://doi.org/10.1007/3-540-44448-3_41
https://hal.inria.fr/hal-02425247
https://hal.inria.fr/hal-02425247
https://hal.inria.fr/hal-02425229
https://www.forbes.com/sites/thomasbrewster/2022/02/23/meet-the-secretive-surveillance-wizards-helping-the-fbi-and-ice-wiretap-facebook-and-google-users/
https://www.forbes.com/sites/thomasbrewster/2022/02/23/meet-the-secretive-surveillance-wizards-helping-the-fbi-and-ice-wiretap-facebook-and-google-users/
https://www.forbes.com/sites/thomasbrewster/2022/02/23/meet-the-secretive-surveillance-wizards-helping-the-fbi-and-ice-wiretap-facebook-and-google-users/
https://eprint.iacr.org/2021/137
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1007/978-3-540-70936-7_4
https://doi.org/10.1007/978-3-540-70936-7_4
https://doi.org/10.1145/237814.238015
https://doi.org/10.1145/237814.238015
https://news.stanford.edu/2016/05/16/stanford-computer-scientists-show-telephone-metadata-can-reveal-surprisingly-sensitive-personal-information/
https://news.stanford.edu/2016/05/16/stanford-computer-scientists-show-telephone-metadata-can-reveal-surprisingly-sensitive-personal-information/
https://doi.org/10.1145/2660267.2660328
https://doi.org/10.1145/2660267.2660328
https://doi.org/10.1145/3372297.3417887
https://doi.org/10.1109/SFCS.1995.492461
https://doi.org/10.1109/SFCS.1995.492461
https://doi.org/10.1109/EuroSP.2017.27
https://doi.org/10.1109/CSF.2016.19
https://doi.org/10.1145/3243734.3243747
https://doi.org/10.1145/3243734.3243747
https://doi.org/10.1007/978-3-319-96884-1_6

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Keitaro Hashimoto, Shuichi Katsumata, and Thomas Prest

Cryptology (2017), 449–473.

[34] Ola Flisbäck. 2015. Stalking anyone on Telegram. https://oflisback.github.io/

telegram-stalking/.

[35] Paul Grubbs, Jiahui Lu, and Thomas Ristenpart. 2017. Message Franking

via Committing Authenticated Encryption. In CRYPTO 2017, Part III (LNCS,
Vol. 10403), Jonathan Katz and Hovav Shacham (Eds.). Springer, Heidelberg,

66–97. https://doi.org/10.1007/978-3-319-63697-9_3

[36] Keitaro Hashimoto, Shuichi Katsumata, Eamonn Postlethwaite, Thomas Prest,

and Bas Westerbaan. 2021. A Concrete Treatment of Efficient Continuous Group

Key Agreement via Multi-Recipient PKEs. In ACM CCS 2021, Giovanni Vigna and
Elaine Shi (Eds.). ACM Press, 1441–1462. https://doi.org/10.1145/3460120.3484817

[37] Keitaro Hashimoto, Shuichi Katsumata, Eamonn Postlethwaite, Thomas Prest,

and Bas Westerbaan. 2021. A Concrete Treatment of Efficient Continuous Group

Key Agreement via Multi-Recipient PKEs. Cryptology ePrint Archive, Report

2021/1407. https://eprint.iacr.org/2021/1407.

[38] Andreas Hulsing, Daniel J. Bernstein, Christoph Dobraunig, Maria Eichlseder,

Scott Fluhrer, Stefan-Lukas Gazdag, Panos Kampanakis, Stefan Kolbl, Tanja Lange,

Martin M Lauridsen, Florian Mendel, Ruben Niederhagen, Christian Rechberger,

Joost Rijneveld, Peter Schwabe, Jean-Philippe Aumasson, Bas Westerbaan, and

Ward Beullens. 2020. SPHINCS+. Technical Report. National Institute of Stan-
dards and Technology. available at https://csrc.nist.gov/projects/post-quantum-

cryptography/round-3-submissions.

[39] Daniel Jost, Ueli Maurer, and Marta Mularczyk. 2019. A Unified and Composable

Take on Ratcheting. In TCC 2019, Part II (LNCS, Vol. 11892), Dennis Hofheinz and
Alon Rosen (Eds.). Springer, Heidelberg, 180–210. https://doi.org/10.1007/978-3-

030-36033-7_7

[40] Shuichi Katsumata, Kris Kwiatkowski, Federico Pintore, and Thomas Prest. 2020.

Scalable Ciphertext Compression Techniques for Post-quantum KEMs and Their

Applications. In ASIACRYPT 2020, Part I (LNCS, Vol. 12491), Shiho Moriai and

Huaxiong Wang (Eds.). Springer, Heidelberg, 289–320. https://doi.org/10.1007/

978-3-030-64837-4_10

[41] Karen Klein, Guillermo Pascual-Perez, Michael Walter, Chethan Kamath, Mar-

garita Capretto, Miguel Cueto, Ilia Markov, Michelle Yeo, Joël Alwen, and

Krzysztof Pietrzak. 2021. Keep the Dirt: Tainted TreeKEM, Adaptively and

Actively Secure Continuous Group Key Agreement. In 2021 IEEE Symposium on
Security and Privacy. IEEE Computer Society Press, 268–284. https://doi.org/10.

1109/SP40001.2021.00035

[42] Andy Kroll. 2021. FBI Document Says the Feds Can Get Your WhatsApp Data

— in Real Time. Rolling Stone. https://www.rollingstone.com/politics/politics-

features/whatsapp-imessage-facebook-apple-fbi-privacy-1261816/.

[43] Kaoru Kurosawa. 2002. Multi-recipient Public-Key Encryption with Shortened

Ciphertext. In PKC 2002 (LNCS, Vol. 2274), David Naccache and Pascal Paillier

(Eds.). Springer, Heidelberg, 48–63. https://doi.org/10.1007/3-540-45664-3_4

[44] Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Peter Schwabe,

Gregor Seiler, Damien Stehlé, and Shi Bai. 2020. CRYSTALS-DILITHIUM. Technical

Report. National Institute of Standards and Technology. available at https:

//csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions.

[45] Moxie Marlinspike and Trevor Perrin. 2016. The double ratchet algorithm.

https://signal.org/docs/specifications/doubleratchet/ https://signal.org/docs/

specifications/doubleratchet/.

[46] Ian Martiny, Gabriel Kaptchuk, Adam Aviv, Dan Roche, and Eric Wustrow. 2021.

Improving Signal’s sealed sender. (2021). To appear at NDSS 2021.

[47] Susan E. McGregor, Polina Charters, Tobin Holliday, and Franziska Roesner.

2015. Investigating the Computer Security Practices and Needs of Journalists. In

USENIX Security 2015, Jaeyeon Jung and Thorsten Holz (Eds.). USENIX Associa-

tion, 399–414.

[48] Susan E. McGregor, Franziska Roesner, and Kelly Caine. 2016. Individual versus

Organizational Computer Security and Privacy Concerns in Journalism. PoPETs
2016, 4 (Oct. 2016), 418–435. https://doi.org/10.1515/popets-2016-0048

[49] Vaishnavi Krishna Mohan. 2021. WhatsApp’s New Privacy Policy: Collect-

ing Metadata and Its Implications. https://www.globalviews360.com/articles/

whatsapps-new-privacy-policy-collecting-metadata-and-its-implications.

[50] Ben Morris, Phillip Rogaway, and Till Stegers. 2018. Deterministic Encryption

with the Thorp Shuffle. Journal of Cryptology 31, 2 (April 2018), 521–536. https:

//doi.org/10.1007/s00145-017-9262-z

[51] Kurt Opsahl. 2013. Why Metadata Matters. https://www.eff.org/deeplinks/2013/

06/why-metadata-matters.

[52] Trevor Perrin. [n.d.]. The Noise Protocol Framework. The Noise Protocol

Framework. http://www.noiseprotocol.org/noise.pdf.

[53] Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyuba-

shevsky, Thomas Pornin, Thomas Ricosset, Gregor Seiler, William Whyte, and

Zhenfei Zhang. 2020. FALCON. Technical Report. National Institute of Stan-

dards and Technology. available at https://csrc.nist.gov/projects/post-quantum-

cryptography/round-3-submissions.

[54] Charlie Savage. 2013. Court Rejects Appeal Bid by Writer in Leak Case. The New

York Times. http://www.nytimes.com/2013/10/16/us/court-rejects-appealbid-

by-writer-in-leak-case.html.

[55] Victor Shoup. 1997. Lower Bounds for Discrete Logarithms and Related Problems.

In EUROCRYPT’97 (LNCS, Vol. 1233), Walter Fumy (Ed.). Springer, Heidelberg,

256–266. https://doi.org/10.1007/3-540-69053-0_18

[56] Nigel P. Smart. 2005. Efficient Key Encapsulation to Multiple Parties. In SCN 04
(LNCS, Vol. 3352), Carlo Blundo and Stelvio Cimato (Eds.). Springer, Heidelberg,

208–219. https://doi.org/10.1007/978-3-540-30598-9_15

[57] Matthew Weidner, Martin Kleppmann, Daniel Hugenroth, and Alastair R. Beres-

ford. 2021. Key Agreement for Decentralized Secure Group Messaging with

Strong Security Guarantees. In ACM CCS 2021, Giovanni Vigna and Elaine Shi

(Eds.). ACM Press, 2024–2045. https://doi.org/10.1145/3460120.3484542

A DEFINITION OF GENERAL
CRYPTOGRAPHIC PRIMITIVES

A.1 Notation
Weprepare some notations and keywords used to define the security

and construct CGKAs. They are taken almost verbatim from [36,

Sec. A.1].

We denote the set of natural numbers (non-negative integers)

by N and the security parameter by 𝜅 ∈ N. For an algorithm 𝐴, we

write 𝐴(·; r) to denote that 𝐴 is run with the explicit randomness

r. For 𝑘, 𝑛 ∈ N such that 𝑘 ≤ 𝑚, we write [𝑘 : 𝑛] to denote the set
{ 𝑘, . . . , 𝑛 }. We use the shorthand [𝑛] when 𝑘 = 1. We use 𝑣 ← 𝑥

and 𝑣 := 𝑥 to denote assigning the value 𝑥 to the variable 𝑣 , and use

𝑣 ←$ 𝑆 to denote sampling an element 𝑣 uniformly and randomly

from a set 𝑆 . We denote by [cond] the bit that is 1 if the boolean
statement cond is true, and 0 otherwise.

Data structure. If 𝑉 is a set, we write 𝑉 +← 𝑥 and 𝑉 -← 𝑥 as

shorthands for 𝑉 ← 𝑉 ∪ { 𝑥 } and 𝑉 ← 𝑉 \ { 𝑥 }, respectively.
For another set𝑊 , we write 𝑉 +← 𝑊 and 𝑉 -← 𝑊 as short-

hands for 𝑉 ← 𝑉 ∪𝑊 and 𝑉 ← 𝑉 \𝑊 , respectively. For lists

(vectors) 𝑥 := (𝑥1, . . . , 𝑥𝑛) and 𝑦 := (𝑦1, . . . , 𝑦𝑚), we denote the

concatenation by 𝑥 ∥𝑦 = (𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑚) and use 𝑥 ++← 𝑣

as a shorthand for 𝑥 ← 𝑥 ∥(𝑣). We further use associative arrays

and use 𝐴[𝑖] ← 𝑥 and 𝑦 ← 𝐴[𝑖] to assignment and retrieval of

element 𝑖 , respectively. We denote by 𝐴[∗] ← 𝑣 the Initialization

of the array to the default value 𝑣 . For simplicity, we use the wild-

card notation when dealing with sets of tuples and multi-argument

associative arrays. For example, for an array with domain I × J ,

we write 𝐴[∗, 𝑗] := {𝐴[𝑖, 𝑗] | 𝑖 ∈ I } and for a set 𝑆 ⊆ I × J , we

write (𝑖, ∗) ∈ 𝑆 as a shorthand for the condition ∃ 𝑗 ∈ J : (𝑖, 𝑗) ∈ 𝑆 .

Keywords.We use the following keywords:

• req cond denotes that if the condition cond is false, then the

current function unwinds all state changes and immediately

returns ⊥.
• parse (𝑚1, . . . ,𝑚𝑛) ← 𝑚 denotes an attempt to parse a

message𝑚 as a tuple. If𝑚 is not of the correct format, the

current function unwinds all state changes and immediately

returns ⊥.
• try 𝑦 ← func(𝑥) is a shorthand notation for calling a helper

function or subroutine func and executing req 𝑦 ≠ ⊥.
• assert cond is only used to describe functionalities. It denotes
that if cond is false, then the functionality permanently halts,

making the real and ideal worlds trivially distinguishable

(this is used to validate inputs of the simulator).

14

https://oflisback.github.io/telegram-stalking/
https://oflisback.github.io/telegram-stalking/
https://doi.org/10.1007/978-3-319-63697-9_3
https://doi.org/10.1145/3460120.3484817
https://eprint.iacr.org/2021/1407
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://doi.org/10.1007/978-3-030-36033-7_7
https://doi.org/10.1007/978-3-030-36033-7_7
https://doi.org/10.1007/978-3-030-64837-4_10
https://doi.org/10.1007/978-3-030-64837-4_10
https://doi.org/10.1109/SP40001.2021.00035
https://doi.org/10.1109/SP40001.2021.00035
https://www.rollingstone.com/politics/politics-features/whatsapp-imessage-facebook-apple-fbi-privacy-1261816/
https://www.rollingstone.com/politics/politics-features/whatsapp-imessage-facebook-apple-fbi-privacy-1261816/
https://doi.org/10.1007/3-540-45664-3_4
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://signal.org/docs/specifications/doubleratchet/
https://signal.org/docs/specifications/doubleratchet/
https://signal.org/docs/specifications/doubleratchet/
https://doi.org/10.1515/popets-2016-0048
https://www.globalviews360.com/articles/whatsapps-new-privacy-policy-collecting-metadata-and-its-implications
https://www.globalviews360.com/articles/whatsapps-new-privacy-policy-collecting-metadata-and-its-implications
https://doi.org/10.1007/s00145-017-9262-z
https://doi.org/10.1007/s00145-017-9262-z
https://www.eff.org/deeplinks/2013/06/why-metadata-matters
https://www.eff.org/deeplinks/2013/06/why-metadata-matters
http://www.noiseprotocol.org/noise.pdf
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
http://www.nytimes. com/2013/10/16/us/court-rejects-appealbid-by-writer-in-leak-case.html
http://www.nytimes. com/2013/10/16/us/court-rejects-appealbid-by-writer-in-leak-case.html
https://doi.org/10.1007/3-540-69053-0_18
https://doi.org/10.1007/978-3-540-30598-9_15
https://doi.org/10.1145/3460120.3484542

How to Hide MetaData in MLS-Like Secure Group Messaging:
Simple, Modular, and Post-Quantum CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

A.2 Decomposable Multi-Recipient Public Key
Encryption

A multi-recipient PKE (mPKE) [13, 43, 56] is a type of PKE that

allows a party to send the same message to a set of recipients of size

𝑁 , more efficiently than executing 𝑁 parallel runs of a standard

PKE. In this work, we use a decomposable mPKE introduced in

[40] that mandates a mPKE ciphertext to be decomposable into a

recipient-dependent and independent part. [40] showed that many

assumptions known to imply PKE (e.g., DDH, LWE, SIDH) can

naturally be used to construct an IND-CCA decomposable mPKE
in the random oracle model.

Definition A.1 (Decomposable Multi-Recipient Public-Key Encryp-
tion). A (single-message) decomposable multi-recipient public-key

encryption (mPKE) over a message spaceM consists of the follow-

ing algorithms:

• mSetup(1𝜅) → pp : On input the security parameter 1
𝜅
, it

outputs a public parameter pp.
• mGen(pp) → (ek, dk) : On input a public parameter pp, it
outputs a pair of encryption key and decryption key (ek, dk).
• mEnc(pp, (ek𝑖)𝑖∈[𝑁] ,M; r0, (r𝑖)𝑖∈[𝑁]) → (ct0, ®ct = (ĉt𝑖)𝑖∈[𝑁]) :
The (decomposable) encryption algorithm splits into a pair

of algorithms (mEnci, mEncd) :
– mEnci (pp; r0) → ct0 : On input a public parameter pp, it
outputs an (encryption key independent) ciphertext ct0.

– mEncd (pp, ek𝑖 ,M; r0, r𝑖) → ĉt𝑖 : On input a public param-

eter pp, an encryption key ek𝑖 , a message M ∈ M, it

outputs an (encryption key dependent) ciphertext ĉt𝑖 .
• mDec(dk, ct0, ĉt𝑖) → M or ⊥ : On input a decryption key

dk and a ciphertext (ct0, ĉt𝑖), it outputs either M ∈ M or

⊥ ∉M.

Definition A.2 (Correctness). A mPKE is correct if we have

E

[
max

M∈M
Pr

[
M = mDec(dk, (ct0, ĉt)) :

ct0 ← mEnci (pp),
ĉt← mEncd (pp, ek,M)

]]
≥ 1 − negl(𝜅),
where the expectation is taken over pp← mSetup(1𝜅) and (ek, dk) ←
mGen(pp).

Ciphertext-spreadness defines how much entropy a properly

generated ciphertext has. For the application of CGKA, we require
the party-independent ciphertext to maintain enough min-entropy.

Note that [36] defined ciphertext-spreadness with the entire ci-

phertext but the proof relies on the high min-entropy of the party

independent part.

Definition A.3 (Ciphertext-Spreadness of Party Independent Cipher-
text). AmPKE has ciphertext-spreadness (with respect to the party

independent ciphertext of), if for all pp ∈ mSetup(1𝜅), we have
E[max

ct0
Pr[ct0 = mEnci (pp)] ≤ negl(𝜅),

where the expectation is taken over pp ← mSetup(1𝜅) and the

encryption randomness.

Definition A.4 (IND-CCA). The security notion is defined by

a game illustrated in Fig. 8, where we say the adversary A wins
if the game outputs 1. A mPKE is IND-CCA secure if for all PPT
adversaries A, we have |Pr[A wins] − 1/2| ≤ negl(𝜅).

GAME IND-CCA

1 : pp← mSetup(1𝜅)
2 : foreach 𝑖 ∈ [𝑁] do
3 : (ek𝑖 , dk𝑖) ← mGen(pp)

4 : (M0,M1) ← AD(·) (pp, (ek𝑖)𝑖∈ [𝑁])
5 : 𝑏 ←$ {0, 1}

6 : (ct∗
0
, ®ct∗ := (ĉt∗𝑖)𝑖∈ [𝑁]) ← mEnc(pp, (ek𝑖)𝑖∈ [𝑁] ,M𝑏)

7 : 𝑏′ ← AD(·) (pp, (ek𝑖)𝑖∈ [𝑁] , ct∗0, ®ct
∗)

8 : return [𝑏 = 𝑏′]

Decapsulation Oracle D(𝑖, ct0, ct)
1 : req (ct0, ĉt) ≠ (ct∗0, ĉt

∗
𝑖)

2 : M← mDec(dk𝑖 , ct0, ĉt)
3 : returnM

Figure 8: IND-CCA security of mPKE.

A.3 Secret Key Encryption
We define secret key encryption SKE.

Definition A.5 (Secret-Key Encryption). Secret-key encryption

(SKE) over a key space K (implicitly parameterized by the security

parameter) and message spaceM consists of the following two

algorithms:

• Encs (k,M) → ct : On input a secret key k ∈ K and a

messageM ∈ M, it outputs a ciphertext ct.
• Decs (k, ct) → M or ⊥ : On input a secret key k and a ci-

phertext ct, it deterministically outputs either M ∈ M or

⊥ ∉M.

Definition A.6 (Correctness). A SKE is correct if Pr[Decs (k, Encs (k,
M)) = M] ≥ 1 − negl(𝜅) holds for all 𝜅 ∈ N,M ∈ M and k ∈ K .

We define IND-CPA and IND-CCA security for SKE by the left-

or-right version of game-based indistinguishability [15].

Definition A.7 (IND-CPA and IND-CCA for SKE). The security
notion is defined by a game illustrated in Fig. 9, where we say

the adversary A wins if the game outputs 1. A SKE is IND-CPA
secure (resp. IND-CCA secure) if for all PPT adversariesA, we have

|Pr[A wins in IND-CPA game (resp. IND-CCA secure)] − 1/2| ≤ negl(𝜅).

We finally define the key-committing property [33]which roughly
states that it is difficult to find two secret keys that correctly decrypt

the same ciphertext (to possibly different messages). As in prior

works [4, 32, 33, 35, 36], we define this notion by providing the

(non-uniform) adversary oracle access to Encs and Decs, where we
implicitly assume these two algorithms are implemented using an

internal hash function modeled as a random oracle.

Definition A.8 (Key-Committing). A SKE has key-committing
property if for all PPT adversary A, we have

Pr

[
Decs (k0, ct) ≠ ⊥
∧Decs (k1, ct) ≠ ⊥

: (k0, k1, ct) ← AEncs,Decs (1𝜅)
]
≤ negl(𝜅).

15

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Keitaro Hashimoto, Shuichi Katsumata, and Thomas Prest

GAME IND-CPA

1 : k←$K
2 : 𝑏 ←$ {0, 1}

3 : 𝑏′ ← ALR(·,·) (1𝜅)
4 : return [𝑏 = 𝑏′]

GAME IND-CCA

1 : k←$K
2 : 𝑏 ←$ {0, 1}
3 : 𝑆 ← ∅

4 : 𝑏′ ← ALR(·,·),D(·) (1𝜅)
5 : return [𝑏 = 𝑏′]

Left-or-Right Oracle LR(M0,M1)
1 : ct← Encs (k,M𝑏)
2 : 𝑆 +← ct

3 : return ct

Decryption Oracle D(ct)
1 : req ct ∉ 𝑆

2 : M← Decs (k, ct)
3 : return M

Figure 9: IND-CPA and IND-CCA security of SKE. If the con-
dition following req does not hold, the game terminates by
returning a random bit.

A.4 Digital Signatures
We provide the standard notion of digital signatures.

Definition A.9 (Signature Scheme). A signature scheme SIG over

a message spaceM consists of the following algorithms:

• Setup(1𝜅) → pp: On input the security parameter 1
𝜅
, it

outputs a public parameter pp.
• KeyGen(pp) → (svk, ssk): On input a public parameter pp it
outputs a pair of verification key and signing key (svk, ssk).
• Sign(pp, ssk,m) → sig: On input a public parameter pp, a
signing key ssk and a message m, it outputs a signature sig.
• Verify(pp, svk,m, sig) → ⊤/⊥: On input a public parameter

pp, a verification key ssk, a message m and a signature sig,
it outputs ⊤ or ⊥.

Definition A.10 (Correctness). A signature scheme SIG is correct

if for all 𝜅 ∈ N, all messages m ∈ M and all pp ∈ Setup(1𝜅),

Pr

[
Verify(pp, svk,m, sig) = ⊤ :

(svk, ssk) ← KeyGen(pp);
sig← Sign(pp, ssk,m)

]
≥ 1 − negl(𝜅).

Definition A.11 (sEUF-CMA). A signature scheme is strongly

EUF-CMA (sEUF-CMA) secure if for all PPT adversaryA, we have

Pr

 Verify(pp, svk,m∗, sig∗) = ⊤
∧(m∗, sig∗) ∉ 𝐿

:

pp← Setup(1𝜅);
(svk, ssk) ← KeyGen(pp);
(m∗, sig∗) ← AS(·) (pp, svk)


≤ negl(𝜅),
where S(·) is defined as Sign(ssk, ·), and 𝐿 is the set of pairs of mes-

sages and signatures generated by the signing oracle. A signature

scheme is EUF-CMA secure if we only restrict (m∗, ∗) ∉ 𝐿 above.

A.5 Message Authentication Codes
We define message authentication codes (MAC).

Definition A.12 (MAC). A (deterministic) message authentication

code MAC over a key space K and a message spaceM consists of

the following algorithms:

• TagGen(k,m) → tag: On input a key k ∈ K and a message

m ∈ M, it (deterministically) outputs a tag tag.
• TagVerify(k,m, tag) → ⊥/⊤: On input a key k, a messagem
and a tag tag, it (deterministically) outputs ⊤ or ⊥.

Definition A.13 (Correctness). A MAC is correct if for all keys

k ∈ K and all messages m ∈ M,

Pr [TagVerify(k,m, TagGen(k,m)) = ⊤] = 1.

Following previous works [12, 36], we use a MAC based on a

hash function modeled as a random oracle. For instance, we can

use HMAC, also used by MLS. Since the security of the MAC is

implicitly invoked during in the generalized selective decryption
(GSD) security game [6, 10, 12, 36], we do not explicitly define the

notion of unforgeability.

A.6 HKDF
HKDF is a key derivation function (KDF) based on HMAC. It con-

sists of the two algorithms HKDF.Extract and HKDF.Expand. The
extraction algorithm k ← HKDF.Extract(s0, s1) outputs a uni-

formly random key k if either s0 or s1 has high min-entropy. The

expansion algorithm klbl ← HKDF.Expand(k, lbl), on input a key

k and a public label lbl, outputs a uniformly random key klbl for lbl.
Both HKDF.Extract and HKDF.Expand were modled as a random

oracle to prove security of Chained CmPKE [36].

A.7 Pseudorandom Function
Let F : K × D → R be a function family with key space K ,
domain D and finite range R. We define a pseudorandom function

as follows.

Definition A.14 (Pseudorandom Function). We say F is a pseudo-

random function (PRF) if for all PPT adversary A, we have����Pr [𝑏 = 𝑏′ :

𝑏 ←$ {0, 1};K←$K ;RF←$RF ;
𝑏′ ← AF(·) (1𝜅)

]
− 1

2

���� ≤ negl(𝜅),

where RF is a set of all functions with domain D and range R,
and F (·) is defined as F(K, ·) if 𝑏 = 0, and RF(·) otherwise.

A.8 Pseudorandom Permutation
Let 𝜙 : K × R → R be a function family of one-to-one functions

from R to R with key space K . We define a pseudorandom permu-

tation as follows.

Definition A.15 (Pseudorandom Permutation). We say𝜙 is a pseudo-

random permutation (PRP) if for all PPT adversary A, we have����Pr [𝑏 = 𝑏′ :

𝑏 ←$ {0, 1};K←$K ;RP←$RP;
𝑏′ ← AP(·) (1𝜅)

]
− 1

2

���� ≤ negl(𝜅),

where RP is the set of all permutations over R, and P(·) is defined
as 𝜙 (K, ·) if 𝑏 = 0, and RP(·) otherwise.

16

How to Hide MetaData in MLS-Like Secure Group Messaging:
Simple, Modular, and Post-Quantum CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

B STATIC METADATA-HIDING CGKA:
DEFINITION

In this section, we propose a UC security model capturing the

security of the 1st & 2nd layers (i.e., group secret keys and static
metadata) by defining a new ideal functionality F ctxt

CGKA
. This is an

extension of the ideal functionality FCGKA [10, 12, 36] that captures

the security of the 1st layer.

B.1 Background
B.1.1 Universal Composable Security. We briefly recall the UC

framework. We refer to [20, 21] for the full descriptions. The UC

security is formalized by the indistinguishability of real and ideal

protocols. In the real protocol, parties execute a protocol Π, where
an adversary A may corrupt some of the parties. In the ideal proto-

col, the parties are replaced by dummy parties that interact with

an ideal functionality F , where a simulator S may corrupt some

of the dummy parties. The dummy parties are defined to be the

identity function that simply outputs whatever is fed as input. In

addition, there is another entity called the environment Z that tries

to distinguish the two protocols. In the real (resp. ideal) protocol,

Z can interact arbitrary with A (resp. S), and it can also invoke

any non-corrupted parties (resp. dummy parties) to honestly run

the protocol Π (resp. the ideal functionality F), where the output is
always reported back toZ. The goal of UC-security is then, given

any adversaryA, to construct a simulator S such that any environ-

ment Z cannot distinguish between the real and ideal protocols.

We say the real protocol Π UC-realizes the ideal functionality F if

such S can be constructed. Put differently, whatever A can learn

from the real protocol Π can be simulated using the information

provided by the ideal functionality F , which is secure by definition.

We often construct a protocol in a setting where a copy of an

ideal functionality G is available. We call such a model G-hybrid
model. If a real protocol Π UC-realizes F while providing access

to an ideal functionality G, then we say Π UC-realizes F in the

G-hybrid model. For a real protocol Π in the G-hybrid model, and

a real protocol Π′ that realizes G (in the standard model), we can

naturally define a composed protocol ΠΠ′
in the standard model,

in which calls for G from Π are answered by Π′ instead of G.
Canetti [20] proved a universal composition theorem stating that,

if Π UC-realizes F in the G-hybrid model and Π′ UC-realizes G,
then ΠΠ′

UC realizes F .

The Corruption Model.We define what we mean by “corrupting”

a party. In this work, we use the corruption model of continuous

state leakage (transient passive corruptions) and adversarially cho-

sen randomness of [10]. This is a standard in CGKA literature,

but this is non-standard for typically UC-security. This corruption

model allows the adversary to repeatedly corrupt parties by send-

ing them two types of corruption messages: (1) a message Expose
causes the party to send its current state to the adversary (once), (2)

a message (CorrRand, 𝑏) sets the party’s rand-corrupted flag to 𝑏.

If 𝑏 is set, the party’s randomness-sampling algorithm is replaced

by the adversary providing the coins instead. Ideal functionalities

are activated upon corruptions and can adjust their behavior ac-

cordingly.

Restricted Environments and Adversaries. To avoid the so-

called commitment problem, caused by adaptive corruptions in

simulation-based frameworks, we restrict the environment (and

thus the adversary) not to corrupt parties at certain times. This

roughly corresponds to ruling out “trivial attacks” in game-based

definitions, e.g., the adversary cannot compromise the secret key

after being provided with the challenge ciphertext. In simulation-

based frameworks, such attacks are no longer trivial, but security

against them requires relatively strong and inefficient cryptographic

tools, e.g., non-committing encryption, and is not achieved by most

protocols. We follow prior works [10, 12, 36, 39] and consider a

weakened variant of UC-security that only quantifies over a re-

stricted set of so-called admissible environments that do not exhibit

the commitment problem. Whether an environment is admissible

or not is defined by the ideal functionality F with statements of

the form restrict cond and an environment is called admissible (for

F), if it has negligible probability of violating any such cond when

interacting with F .

B.1.2 PKI functionality. As in [12, 36], we define our CGKA in a

hybrid model where parties can access an ideal functionality that

models an (untrusted) PKI. In the real protocol, the parties can

interact with the Authentication Service (AS) and Key Service (KS)

PKI functionalities. For instance, the environment can instruct the

AS (via the party’s protocol) to register a new key for a party. As

a result, the AS generates a new key pair for the party and hands

the public key to the environment, making the secret key available

to the party’s protocol upon request. We note that the adversary

can register arbitrary signature keys for any party to capture an

insider adversary.

Authentication Service (AS). The authentication service (AS) cer-

tifies the ownership of a signature key. The AS is formalized by the

functionality FAS defined in Fig. 10. The definition is identical to

that used in [37]. FAS allows parties to register fresh signature key

pairs via register-svk query and to check whether a verification

key svk is registered by a party id′ via the verify-cert query. On

registration, the new key pair for a party id is generated by FAS
using a genSSK algorithm (whose concrete specification depends

on the CGKA). If id’s current randomness source is corrupted (i.e.,

RandCorr[id] = ‘bad’), FAS asks the adversary to provide the ran-

domness. After registration, id receives the new verification key svk.
Also, parties can retrieve their signing keys via get-ssk query and

delete registered signing keys via del-ssk query. The adversary

can register arbitrary verification keys in the name of any party.

When a party is corrupted, all signing keys except for the deleted

ones are leaked to the adversary. Security is modeled by the ideal-

world variant of FAS, called F IW

AS
. It marks leaked signing keys by

storing them in the ExposedSvk array (see boxes in Fig. 10). FAS
allows the Key Service functionality FKS (see below) to signal that

a certain ssk is leaked. FKS sends this signal when the signature

key is leaked due to a compromise of a key package. Finally, F IW

AS

always leaks all registered signing keys to the simulator.

Key Service (KS). The Key Service (KS) allows parties to upload

one-time key packages used to add them to groups while they

are offline. The KS is formalized by the functionality FKS defined
in Fig. 11. The functionality is identical to that used in [37] except

that KS checks the validity of maliciously registered key packages

17

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Keitaro Hashimoto, Shuichi Katsumata, and Thomas Prest

and parties can check whether the key package is registered to KS.

In our definition, when the adversary registers a key package to

FKS, FKS checks whether the registering key packages are valid by

the *validate-kp function. Thus, FKS ensures the registered key

packages are valid in the sense that the *validate-kp function

returns true. In addition, parties also check the key package is

registered to FKS via a has-kp query. This allows parties to check

the validity of a key package via the has-kp query since FKS en-
sures the validity of registered key packages. We introduce these

functions to make the syntax of an add and update proposal to

look more similar. When a party id adds a party id𝑡 , it first fetches
an id𝑡 ’s key package from KS and invokes a CGKA protocol (or

FCGKA) on input (Propose, ‘add’-id𝑡 -kp𝑡). The party (and FCGKA)
can check the validity of kp𝑡 through the has-kp query to FKS. This
is syntactically similar to an update proposal where, the updated

signing key svk is validated via the verify-cert query.

Other functionalities are identical to that used in [37]. Similar

to FAS, parties can register key packages via the register-kp
query. Upon receiving the register-kp query,FAS generates a new
key package using a genKP(id, svk, ssk) algorithm (whose concrete

specification depends on the CGKA), which takes a party’s identity

id and a signature key pair (svk, ssk) and outputs a key package

and the corresponding decryption key. Parties can request another

party’s key package via get-kp query. The returned key package

is specified by the adversary. This reflects that the adversary can

maliciously inject key packages that were not registered by honest

parties. Finally, the ideal-world KS functionality F IW

KS
always leaks

all decryption keys to the simulator.

B.1.3 History Graph. Weuse a so-called history graph [9, 10, 12, 36]
to define the ideal functionality F ctxt

CGKA
.

Overview. A history graph is a labeled directed graph that acts as

a symbolic representation of a group’s evolution. It has two types

of nodes: commit and proposal nodes, representing all executed

commit and propose operations, respectively. Each party is uniquely

assigned to a commit node indicating that a party is in a group

of members that processed the commit assigned to that specific

commit node. The nodes’ labels, furthermore, keep track of all the

additional information relevant for defining security. For instance,

proposal nodes have a label that stores the proposed action, and

commit nodes to have labels that store the epoch’s application

secret and the set of parties corrupted in the given epoch. Security

of the application secrets is then formalized by the functionality

of choosing a random and independent key for each commit node

whenever security is guaranteed; otherwise, the simulator gets to

choose the key. Whether security is guaranteed in a given node, is

determined via an explicit safe predicate on the node and the history

graph. In addition to the secrecy of the keys, the functionality also

formalizes authenticity by appropriately disallowing injections.

Formal Defintion. As explained in Sec. 3.2, we deviate from the

definition of prior history graphs used to define CGKA in the UC

framework. Each node in the history graph is identified by node

pointers: prop-id ∈ N for proposal nodes and node-id ∈ { 0 } ∪ N
for commit nodes. In contrast, prior works [9, 11] used concrete

(non-encrypted) proposals and commits to identify each node. This

formalization was well-defined in prior works since each proposal

and commit identified a unique group operation in the real protocol.

However, when considering static metadata-hiding, two distinct

(encrypted) proposals or commits may encrypt the same group

operation, in which case, we would like to assign these distinct

proposals and commits to the same node. Otherwise, two parties

can be in the same group in the real protocol, while they are included

in a different commit node in the history graph. Roughly, pointers

prop-id and node-id define the semantics of a group operation and

allow us to assign semantically equivalent proposals and commits

to the same node. The pointer values of a proposal or a commit will

be arbitrarily assigned by the simulator, and the ideal functionality

checks whether the created history graph maintains consistency,

authenticity, and confidentiality.

All nodes in the history graph store the following values:

• orig: the identity of the party who created the node, i.e., the

message sender.

• par: the parent commit node, representing the sender’s cur-

rent epoch.

• stat ∈ { ‘good’, ‘bad’, ‘adv’ }: the flag indicating whether

the secrets corresponding to the node are known to the

adversary. ‘good’ means this node is secure, ‘bad’ means

this node is created with adversarial randomness (hence it is

well-formed but the adversary knows the secret), and ‘adv’
means this node is created by the injected message from the

adversary.

Proposal nodes further store the following values:

• act ∈ { ‘upd’-kp, ‘add’-id𝑡 -kp𝑡 , ‘rem’-id𝑡 }: the proposal ac-
tion. ‘upd’-kp means the corresponding party updates its

key package to kp. ‘add’-id𝑡 -kp𝑡 means id𝑡 is added with the

key package kp𝑡
23
.

Commit nodes further store the following values. In this work,

history graphs keep gid, epoch, and new variable conthide in addi-

tion to the values used in the previous work [12, 37]:

• gid: the group identifier.

• epoch: the current epoch number.

• prop: the ordered list of committed proposals.

• mem: the list of a pair of group member’s identity and its key

package, which is sorted by dictionary order in identities.

• vcom: the list of party-dependent commitments associated

with this node.

• key: the group (application) secret.

• exp: the set keeping track of corrupted parties in this node.

• chall: the flag indicating whether the group secret is chal-

lenged. That is, chall = true if a random group key was

generated for this node, and false if the key was set by the

adversary (or not generated).

• conthide: the flag indicating whether the static metadata

protection is assured at this epoch. That is, conthide = true
means the messages issued with this epoch’s group secret

hide metadata, and falsemeans the metadata is leaked. This

value is initialized when one of proposal/commit/welcome

messages is first created at this epoch.

For convenience, we define the following helper function.

• indexOf (id): returns the index of id in the list mem.

23
The previous models only kept signature keys in kp. To capture metadata-hiding

property, we need to manage which key packages are being added/updated.

18

How to Hide MetaData in MLS-Like Secure Group Messaging:
Simple, Modular, and Post-Quantum CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

The functionality is parameterized by a key generation algorithm genSSK().

Initialization

1 : RegisteredSvk← ∅; ExposedSvk← ∅

2 : SSK[∗, ∗] ← ⊥
3 : RandCorr[∗] ← ‘good’

Inputs from a party id
Input (register-svk)

1 : if RandCorr[id] = ‘good’ then

2 : (svk, ssk) ← genSSK()
3 : else

4 : Send (rnd, id) to the adversary and receive r

5 : (svk, ssk) ← genSSK(r)

6 : ExposedSvk +← svk

7 : RegisteredSvk +← (id, svk)
8 : SSK[id, svk] ← ssk

9 : Send (register-svk, id, svk, ssk) to the adversary

10 : Send svk to the party id

Input (get-ssk, svk)
1 : Send SSK[id, svk] to id

Input (del-ssk, svk)
1 : SSK[id, svk] ← ⊥

Input (verify-cert, id′, svk)
1 : Send (id′, svk) ∈ RegisteredSvk to id

Inputs from the adversary
Input (register-svk, id, svk)
1 : if (∗, svk) ∉ RegisteredSvk then

2 : ExposedSvk +← svk

3 : RegisteredSvk +← (id, svk)

Input (expose-ssk, id)
1 : ExposedSvk +← { svk | SSK[id, svk] ≠ ⊥ }

2 : Send SSK[id, ∗] to the adversary

Input (CorrRand, id, 𝑏), 𝑏 ∈ { ‘good’, ‘bad’ }
1 : RandCorr[id] ← 𝑏

Inputs from F ctxt
CGKA and FKS

Input (exposed, id, svk)
1 : ExposedSvk +← svk

2 : Send SSK[id, svk] to the adversary

Inputs from F ctxt
CGKA and FKS

Input (has-ssk, id, svk)
1 : Send SSK[id, svk] ≠ ⊥ to Fctxt

CGKA

Figure 10: The ideal authentication service functionality FAS and its variant F IW
AS used during the security proof.

B.2 UC Security Model and F ctxt
CGKA

We propose a new ideal functionality F ctxt
CGKA

capturing the static

metadata-hiding property of CGKAs. F ctxt
CGKA

is based on the prior

ideal functionality FCGKA [36, 37] that only captured the security

of group secret keys. The ideal functionality F ctxt
CGKA

is formally de-

fined in Figs. 12 to 14, along with several helper functions in Figs. 16

to 20 to aid the readability. By setting the flag flagcontHide to false

and flagselDL to false (resp. true) in the “Initialization,” F ctxt
CGKA

be-

comes identical to FCGKA used in [37] (resp. [36] capturing selective
downloading).

To specify the ideal functionality F ctxt
CGKA

, we also need to define

the following:

Safety Predicates: safe, sig-inj-allowed, and mac-inj-allowed
specify which epoch secrets are secure and when authentic-

ity is guaranteed,

Leakage Functions: *leak-create, *leak-prop, *leak-com, *leak-wel,
and *leak-proc specify information leaked from protocol

messages.

The safety predicates and leakage functions are protocol specific.

For instance, some CGKA may leak the type of proposal, while oth-

ers may not. Put differently, a specific CGKA UC-realizes the ideal

functionality F ctxt
CGKA

with respect to a particular choice of safety

predicates and leakage functions. By tuning the choice, F ctxt
CGKA

al-

lows modeling a wide variety of CGKAs. A concrete choice of such

safety predicates and leakage functions is provided in App. C.2,

where we prove UC-security of our CGKA Chained CmPKEctxt.
Below, we provide an overview of the ideal functionality F ctxt

CGKA
.

States. Different from the previous functionality in [36], F ctxt
CGKA

maintains parties’ key packages kp instead of signature keys only.

Also, it keeps track of party-specific secrets (e.g., CmPKE decryp-

tion key) by managing the PendDK array (which stores pend-

ing secrets of the key package kp), and the CurrDK array (which

stores the current secrets of id). In other words, this modification

means that F ctxt
CGKA

manages key packages as if the key service does.

Moreover, F ctxt
CGKA

switches its functionality according to the flag

flagselDLand flagcontHide: flagselDLis set to trueif it performs

selective downloading, and flagcontHideis set to trueif it offers
static metadata-hiding. The other states are identical to FCGKA

19

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Keitaro Hashimoto, Shuichi Katsumata, and Thomas Prest

The functionality is parameterized by a key-package generation algorithm genKP(id, svk, ssk) and a key package validation function

*validate-kp(kp, id).

Initialization

1 : RegisteredKp← ∅
2 : DK[∗, ∗] ← ⊥; SVK[∗, ∗] ← ⊥
3 : RandCorr[∗] ← ‘good’

Inputs from a party id
Input (register-kp, svk, ssk)
1 : if RandCorr[id] = ‘good’ then

2 : (kp, dk) ← genKP(id, svk, ssk)
3 : if kp = ⊥ then return

4 : else

5 : Send (rnd, id) to the adversary and receive r

6 : (kp, dk) ← genKP(id, svk, ssk; r)
7 : if kp = ⊥ then return

8 : Send (exposed, id, svk) to FAS
9 : RegisteredKp +← (id, kp)
10 : DK[id, kp] ← dk; SVK[id, kp] ← svk

11 : Send (register-kp, id, svk, kp, dk) to the adversary

12 : Send kp to the party id

Input (get-dks)
1 : Send { (kp,DK[id, kp]) | DK[id, kp] ≠ ⊥ } to id

Input (get-kp, id′)
1 : Send (get-kp, id, id′) to the adversary and receive kp′

2 : try *validate-kp(kp, id)
3 : RegisteredKp +← (id′, kp′)
4 : Send kp′ to id

Input (del-kp, kp)
1 : DK[id, kp], SVK[id, kp] ← ⊥

Inputs from id and F ctxt
CGKA

Input (has-kp, id, kp)
1 : Send (id, kp) ∈ RegisteredKp

Inputs from the adversary
Input (CorrRand, id, 𝑏), 𝑏 ∈ { ‘good’, ‘bad’ }
1 : RandCorr[id] ← 𝑏

Inputs from the adversary and F ctxt
CGKA

Input (exposed, id)
1 : Send DK[id, ∗] to the adversary

2 : foreach svk ∈ SVK[id, ∗] s.t. svk ≠ ⊥ do

3 : Send (exposed, id, svk) to FAS

Figure 11: The ideal key service functionality FKS and and its variant F IW
KS used during the security proof.

in [36] with some syntactical change. F ctxt
CGKA

maintains the his-

tory graph. As explained in App. B.1.3, it identifies proposal nodes

by a pointer prop-id ∈ { 0 } ∪ N and commit nodes by a pointer

node-id ∈ { 0 } ∪ N. We assume one group is created by an honest

party (see Create in Fig. 12). This creates a root (commit) node

called the main root identified by the pointer node-id = 0. We call

the group starting from the main root main group. Moreover, other

roots may be created without a commit message (e.g., when a party

processes an injected welcome message that is not directly related

to the main group). Such roots are called detached root. F ctxt
CGKA

also

stores a pointer Ptr[id] for each party id. Ptr[id] identifies id’s
current commit node (i.e., current epoch). If id is not in the group,

Ptr[id] = ⊥.
Interface. F ctxt

CGKA
offers interfaces to create a group, create a pro-

posal, commit to a list of proposals, process a commit, join a group,

and retrieve the group secret key. All interfaces except create and

join are for group members only (i.e., parties for which Ptr[id] ≠ ⊥).
We explain each interface in more detail below.

Group creation (See Fig. 12) F ctxt
CGKA

allows one main group to be cre-

ated by a designated party idcreator. Initially, the main group has

a single party idcreator, and it can invite additional members by

issuing add proposals and committing to them. F ctxt
CGKA

checks the

validity of idcreator’s signature key by *valid-svk. Then, F ctxt
CGKA

informs the adversary S24 of the creation of a new group by send-

ing the message (Create) to S. (This models the fact that a server

knows when a group is created.) If flagcontHide = false, the ad-
versary also receives the identity and signature key of the group

creator. Otherwise, the adversary receives *leak-create(id, svk).
The adversary returns the new group’s identity gid. Then, F ctxt

CGKA

generates the initial key package by the *update-kp function. The

*update-kp function generates a new key package by itself if both

flagcontHideand safe are true; otherwise asks the key package to

the adversary S. This models, in the ideal metadata-hiding CGKA

protocol, an honest party generates a new key package, but it is

hidden from the adversary.
25

Then, F ctxt
CGKA

initializes the root node.

Note that the epoch of an initial group is set to 0.

Creating proposals (See Fig. 12) A party id can be invoked by the en-

vironmentZ to create a proposal with a specific action act. F ctxt
CGKA

informs the adversary S that a proposal message is being created.

24
In the UC framework, it is conventional to call S appearing in the ideal functionality

as the “adversary.” We use the term “simulator” during the security proof.

25
If the flag flagcontHideis false, the key package is asked to the adversary S; this

means the key package is known to the adversary because the group creator is known.

20

How to Hide MetaData in MLS-Like Secure Group Messaging:
Simple, Modular, and Post-Quantum CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

S receives *leak-prop(id, act) and returns a flag ack, an ideal pro-

posal p and a node pointer prop-id. If flagcontHide = false, then S
obtains all the information (Ptr[id], id, act) = *leak-prop(id, act)
that can be inferred from a non-encrypted proposal. F ctxt

CGKA
al-

lows S to send ack = false to report that the protocol fails. If

act = ‘upd’, F ctxt
CGKA

updates act with the new updated key pack-

age returned from *update-kp function. The *update-kp func-

tion generates a new key package by itself if both flagcontHideand
safe are true; otherwise asks the key package to the adversary

S. This models, in the ideal metadata-hiding CGKA protocol, an

honest party generates a new key package, but the proposal mes-

sage hides the key package from the adversary.
26

If the protocol

succeeds, and if no node associated with p exists, F ctxt
CGKA

creates

a new proposal node Prop[propCtr] and assigns propCtr to p (set-

ting PropID[p] ← propCtr). In certain situations, F ctxt
CGKA

may

not create a new proposal node. For example, id proposes to re-

move the same party twice in the same epoch. Another example

is when the adversary S controls the party’s randomness (via set-

ting RandCorr = ‘bad’) and the party proposes to update using

the same randomness twice. In these cases, S can specify to at-

tach the created proposal p to an existing proposal node prop-id.
F ctxt
CGKA

then enforces that the states on the existing proposal node

are consistent with the expected one using *consistent-prop.
F ctxt
CGKA

marks whether the current epoch is secure or not using

*mark-content-hiden-epoch. This information is used to deter-

mine epochs the adversary is allowed to corrupt (see the restrict
check run within Expose in Fig. 14). Finally, if all check passes,

F ctxt
CGKA

returns the proposal message p to the calling (dummy)

party id, which simply relays it to the environmentZ.

Committing to proposals (See Fig. 12) A party id can be invoked by

the environment Z to create a commit with a list of proposals ®p,
along with a (possibly fresh) signature verification key svk. F ctxt

CGKA

informs the adversaryS that a commit message is sent and provides

*leak-com(id, ®p, svk). If flagcontHide = false, then S obtains all

the information (Ptr[id], id, ®p, svk,mem) = *leak-com(id, ®p, svk)
that can be inferred from a non-encrypted commit. F ctxt

CGKA
receives

a flag ack, a commit node node-id, and a commit message (c0, ®c).
Here, ®c is a list of party dependent messages (̂cid)id; if selective
downloading is performed (i.e., flagselDL is true), then party id
only needs to retrieve (c0, ĉid) from the server. The adversary S
sets ack := false to report that the protocol fails. F ctxt

CGKA
then

obtains the new updated key package via the *update-kp function.
This models, in the ideal metadata-hiding CGKA protocol, an honest

committer generates a new key package, and it is hidden from the

adversary. If the commit protocol succeeds, F ctxt
CGKA

first asks S to

interpret the injected proposals, i.e., proposals where no node has

been created, by calling *fill-prop. It then computes the new

member set resulting from applying ®p to the current member set

by calling *next-members (which returns ⊥if ®p contains invalid

proposals).

F ctxt
CGKA

then checks the format of ®c specified by S. If flagselDLis
true, F ctxt

CGKA
requires that ®c contains the same number of party-

dependent messages as the number of the current members. Else, ®c
must be ⊥.
26
If the flag flagcontHideis false, the key package is asked to the adversary S; this

means the key package is known to the adversary.

F ctxt
CGKA

then either creates a new commit node or verifies that the

existing node is consistent by *consistent-com. The adversary S
can specify an existing node-id. This case may happen for example

when the adversary makes a party process an injected commit

message c0 and then makes another party commit the same c0 by
controlling its randomness. If the specified node Node[node-id] is
a detached root, F ctxt

CGKA
attaches it to id’s current node by calling

*attach. Once the detached root is attached to the main group, the

root’s tree achieves the same security guarantee as the main tree.

Since attaching a detached root changes the topology of the history

graph, F ctxt
CGKA

enforces two invariants: cons-invariant enforces
the consistency of the graph, and auth-invariant enforces the

authenticity guarantee.

When add proposals are committed (i.e., addedMem ≠ ⊥),F ctxt
CGKA

informs the adversary S that a welcome message is sent and pro-

vides *leak-wel on input the id’s current epoch Ptr[id], the new
epoch Node[c0] and the receiver’s identity id𝑡 . If flagcontHide =

false, then S obtains all the information that can be inferred from

a non-encrypted welcome message. S returns a simulated welcome

message 𝑤 to F ctxt
CGKA

. We note that in prior definitions [36, 37],

the commit and welcome messages were simultaneously simulated

by S. We consciously divide this process into two. This allows us

to model the fact that a welcome message does not necessarily

leak information about the group. That is, the server can observe

that a party id is invited to some group but will not know which

group.
27
. F ctxt

CGKA
assigns the welcome message to the commit node

created above. Finally, F ctxt
CGKA

marks whether the current epoch

is secure or not using *mark-content-hiden-epoch and returns

(c0, ®c, ®𝑤) to the calling (dummy) party id, which simply relays it to

the environmentZ
Processing commits (See Fig. 13)A party id can be invoked by the en-
vironmentZ to process a commit message with an associating list

of proposals (c0, ĉ, ®p). We explain the case where selective down-

loading is performed (i.e., flagselDLis true). F ctxt
CGKA

first checks

that ĉ is the correct id-dependent message associated with c0, and
outputs ⊥if it is incorrect. (In case flagselDL is false, ĉ must be

⊥.) F ctxt
CGKA

then calls S on input *leak-prop(id) and (c0, ĉ, ®p). S
sets ack := false to report that the protocol failed. If the process
succeeds, F ctxt

CGKA
first asks the adversary to interpret the injected

proposals by calling *fill-prop. F ctxt
CGKA

then either creates a new

commit node or verifies that the existing node is consistent. The

adversary can specify the existing node-id. If the node correspond-
ing to c0 does not exist and the adversary does not specify any

existing node, F ctxt
CGKA

checks the validity of ®p and creates a new

commit node with the committer identity orig′ and its signature

key svk′ which are S interprets from (c0, ®c, ®p). Note that the new
node holds the same group identity as id’s current node and the

epoch is incremented. If the commit message was assigned a node

(i.e., Node[c0] ≠ ⊥) or the adversary S specifies an existing node,

F ctxt
CGKA

checks the validity of the group identity and epoch and

enforces that it is a valid successor of id’s current node by calling

*valid-successor. If c0 is assigned to a detached root, F ctxt
CGKA

at-

taches the root to id’s current node. If c0 is not assigned a node,

F ctxt
CGKA

assigns the adversary-specified node-id to c0.

27
Note that we can capture the situation where a welcome message leaks the group

by defining *leak-wel to output the node pointer of the commit message.

21

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Keitaro Hashimoto, Shuichi Katsumata, and Thomas Prest

Finally, if c0 removes id, F ctxt
CGKA

sets Ptr[id] = ⊥. Otherwise,
F ctxt
CGKA

updates id’s secrets if necessary and moves Ptr[id] to the
new commit node. The calling party receives the committer’s iden-

tity, the semantics of the applied proposals, and the list of (id, svk)-
pair.

Joining a group (See Fig. 13) A party id can be invoked by the envi-

ronmentZ to join a group using the welcome message𝑤 . F ctxt
CGKA

forwards (id,𝑤) to the adversary S and receives the interpreted

result. As usual, the adversary sets ack := false to report that

the protocol failed. If the process succeeds, F ctxt
CGKA

identifies the

commit node node-id = Wel[id,𝑤] corresponding to 𝑤 . If this

is the first time F ctxt
CGKA

sees 𝑤 , i.e., Wel[id,𝑤] = ⊥, S can spec-

ify node-id′. If the commit node for node-id′ does not exist (i.e.,
Node[node-id′] = ⊥), F ctxt

CGKA
creates a new detached root where

all the stored values are chosen by S. Finally, F ctxt
CGKA

updates id’s
secrets (registered in the key service FKS) and returns the state of

the joining group (the committer’s identity, the group identity, the

epoch, and the list of (id, kp)-pair) to the calling (dummy) party id.

Group keys (See Fig. 13) Parties can fetch the current group secret

via the Key query. The returned group secret k is random if the pro-

tocol guarantees its confidentiality (identified by the safe predicate).
Otherwise, k is set by the adversary. Unlike prior definitions [36, 37],
we also prepare two extra group secret keys: the metadata key kmh
that can be obtained using Keymh, and the next metadata key kmh

′

that can be obtained using NextKeymh. While Keymh is defined iden-
tically to Key, NextKeymh is a function that allows obtaining the

metadata key at the next epoch. These keys are explicitly used to

hide the dynamic metadata. That is, if we only care about hiding

static metadata, these two group secret keys can be safely omitted

from the definition.

Corruptions (See Fig. 14) The adversary S can corrupt a party id
using the Expose query. When the adversary S inputs (Expose, id)
to F ctxt

CGKA
, the ideal functionality records the following leaked in-

formation:

• The current group secret keys and id’s key materials (e.g.,

encryption key and signing key). This is recorded by adding

id to the exposed set of id’s current node (cf. Line 2 in

(Expose, id) query).
• The key materials created by id during an update or a com-

mit at the current epoch. This is recorded by setting the

status of all the child commit nodes created by id (i.e., nodes

with par = Ptr[id]) to ‘bad’ (cf. *update-stat-after-exp
function).

• The current signature signing key ssk. This is recorded by

signaling to FAS that svk is exposed and sends ssk to the

adversary (cf. Line 5 in (Expose, id) query).

Then, the ideal functionality gives id’s current epoch Ptr[id], the
associated information Node[Ptr[id]], and id’s current secret keys
stored in the CurrDK array. (Note that F ctxt

CGKA
manages users’ key

packages and secret information, see above.) Also, the adversary

is allowed to corrupt a non-group member id as well. In such a

case, the key packages that id registered to the key service FKS
are leaked. F ctxt

CGKA
signals to FKS that key packages (including the

signing key) are exposed and send the corresponding decryption

keys and signing keys to the adversary (cf. Line 7 in (Expose, id)
query).

If an adversary is allowed to compromise key materials that can

be used to compute a group secret key, which F ctxt
CGKA

has already

assigned random values, thenZ trivially distinguishes a real pro-

tocol from an ideal protocol. For instance, if Z queries Key for a

commit node where the predicate safe is true, then F ctxt
CGKA

assigns

a random value to the group secret key k. Then, if the adversary
at some later point compromises a party id via an (Expose, id) and
can compute the real group secret key k′ from the compromised

key materials,Z can distinguish the two protocols by checking if

k = k′.
To avoid such trivial attacks, we restrict the environment to

not be able to corrupt key materials for those commit nodes with

chall = true or conthide = true. The former is identical to those

used in prior works [36, 37]; if a random group secret key was

set, then Z cannot corrupt a party that allows recovering of the

real group secret key. The latter is new to this work. For static

metadata-hiding, recall that we must encrypt the proposal and

commits. This is modeled in F ctxt
CGKA

by requiring the adversary S to

create the (encrypted) proposal and commits without knowing the

message when the predicate safe is true. IfZ were to compromise

a party that allows recovering the real group secret key, it can try to

decrypt the encrypted proposal or commit to trivially distinguish

between a real and ideal protocol. conthide = true indicates that
a commit node created random encryption and restricts Z from

later corrupting it. Note that this implies that the predicate safe for
honestly generated commit nodes cannot be switched from true to

false once created. This is in sharp contrast to previous definitions

since the group secret key was never implicitly used as part of the

real protocol. We note that this is not a weakness of our security

model but rather a natural consequence of considering CGKAs in a

larger system.

22

How to Hide MetaData in MLS-Like Secure Group Messaging:
Simple, Modular, and Post-Quantum CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

Initialization

1 : Ptr[∗], Prop[∗],Node[∗],Wel[∗] ← ⊥
2 : propCtr, nodeCtr← 1

3 : // Flag is set to true if selective downloading is performed.

4 : flagselDL = true

5 : // Flag is set to true if propose and commit contents are hidden

6 : flagcontHide = true

7 : PropID[∗],NodeID[∗] ← ⊥

8 : PendDK[∗],CurrDK[∗] ← ⊥

9 : RandCorr[∗] ← ‘good’

Inputs from a party idcreator
Input (Create, svk)
1 : req Ptr[idcreator] = ⊥
2 : Send (Create, *leak-create(idcreator, svk)) to S and receive gid

3 : req *valid-svk(idcreator, svk)

4 : (kp, dk) ← *update-kp(id, svk)

5 : mem← { (idcreator, kp) } ; CurrDK[id] ← dk

6 : Node[0] ← *create-root(gid, 0, idcreator,mem,RandCorr[id])
7 : Ptr[idcreator] ← 0

Inputs from a party id
Input (Propose, act), act ∈ { ‘upd’-svk, ‘add’-id𝑡 -kp𝑡 , ‘rem’-id𝑡 }
1 : req Ptr[id] ≠ ⊥
2 : Send (Propose, *leak-prop(id, act)) to S and receive (ack, prop-id, p)
3 : req ack

4 : if act = ‘upd’-svk then

5 : req *valid-svk(id, svk)

6 : (kp, dk) ← *update-kp(id, svk)

7 : act← ‘upd’-kp

8 : PendDK[kp] ← dk

9 : if act = ‘add’-id𝑡 -kp𝑡 then req *valid-kp(id𝑡 , kp𝑡)
10 : if PropID[p] = ⊥ ∧ prop-id = ⊥ then

11 : Prop[propCtr] ← *create-prop(Ptr[id], id, act,RandCorr[id])
12 : PropID[p] ← propCtr; propCtr++

13 : else

14 : if PropID[p] = ⊥ then (prop-id′, PropID[p]) ← (prop-id, prop-id)
15 : else prop-id′ ← PropID[p]
16 : *consistent-prop(prop-id′, id, act)
17 : if act = ‘upd’-svk ∧ RandCorr[id] = ‘bad’ then

18 : Send (exposed, id, svk) to FAS
19 : // Mark whether generated messages hide contents (static metadata)

20 : *mark-content-hiden-epoch(Ptr[id])
21 : return p

Input (Commit, ®p, svk)
1 : req Ptr[id] ≠ ⊥
2 : Send (Commit, *leak-com(id, ®p, svk)) to S and receive (ack, node-id, c0, ®c)
3 : req *valid-svk(id, svk)

4 : (kpnew, dknew) ← *update-kp(id, svk)

5 : PendDK[kpnew] ← dknew

6 : req *succeed-com(id, ®p, kpnew) ∨ ack
7 : *fill-prop(®p)

8 : (mem′, ∗) ← *next-members(Ptr[id], id, ®p, kpnew)

9 : assert mem′ ≠ ⊥ ∧ (id, kpnew) ∈ mem′

10 : // If selective downloading is performed, then member specific ®c has the same size

// as the current member. Otherwise, ®c is ⊥

11 : if flagselDL then

12 : assert |®c | = |Node[Ptr[id]] .mem |
13 : else

14 : assert ®c = ⊥
15 : if NodeID[c0] = ⊥ ∧ node-id = ⊥ then

16 : Node[nodeCtr] ← *create-child(Ptr[id], id, ®p, ®c,mem′,RandCorr[id])
17 : NodeID[c0] ← nodeCtr; nodeCtr++

18 : else

19 : if NodeID[c0] = ⊥ then (node-id′,NodeID[c0]) ← (node-id, node-id)
20 : else node-id′ ← NodeID[c0]
21 : *consistent-com(node-id′, id, ®p,mem)
22 : if Node[node-id′] .par = ⊥ then

23 : *attach(node-id′, id, ®p)
24 : // Create welcome message for added members

25 : addedMem← Node[NodeID[c0]] .mem \ Node[Ptr[id]] .mem

26 : ®𝑤 ← ∅
27 : foreach (id𝑡 , ∗) ∈ addedMem do

28 : Send (Welcome, *leak-wel(Ptr[id],NodeID[c0], id𝑡)) to S and

29 : receive (ack, 𝑤)
30 : req ack

31 : parse (id𝑡 , ∗) ← 𝑤

32 : assert Wel[id𝑡 , 𝑤] ∈ { ⊥,NodeID[c0] }
33 : Wel[id𝑡 , 𝑤] ← NodeID[c0]
34 : ®𝑤 +← 𝑤

35 : assert cons-invariant ∧ auth-invariant
36 : if RandCorr[id] = ‘bad’ then

37 : Send (exposed, id, svk) to FAS
38 : // Mark whether generated messages hide contents (static metadata)

39 : *mark-content-hiden-epoch(Ptr[id])
40 : if ®𝑤 ≠ ∅ then *mark-content-hiden-epoch(NodeID[c0])
41 : return (c0, ®c, ®𝑤)

Figure 12: The ideal static metadata-hiding CGKA functionality F ctxt
CGKA: Create, Propose, Commit. The modifications in order for

the functionality to keep track of key packages are highlighted in in orange .

23

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Keitaro Hashimoto, Shuichi Katsumata, and Thomas Prest

Input (Process, c0, ĉ, ®p)
1 : req Ptr[id] ≠ ⊥
2 : // If c0 and ®p were generated honestly, then use the existing node-id ≠ ⊥.

// Otherwise, the group secret must be exposed and S decides where to attach Ptr[id].

3 : Send (Process, *leak-proc(id), c0, ĉ, ®p) to S and

4 : receive (ack, node-id, orig′, kp′)

5 : req *succeed-proc(id, c0, ĉ, ®p) ∨ ack
6 : *fill-prop(®p)
7 : // If selective downloading is performed,

// then only the member-specific commitment ĉ is accepted when c0 is honestly generated.

if flagselDL then

8 : node-id← NodeID[c0]
9 : if node-id ≠ ⊥ ∧ Node[node-id] .stat = ‘good’ then

10 : indexid ← Node[Ptr[id]] .indexOf (id)
11 : req ĉ = Node[node-id] .vcom[indexid]
12 : else

13 : assert ĉ = ⊥ // Otherwise, ĉ is ⊥.

14 : // If node-id = ⊥, create a new node; Otherwise, check consistency with existing node.

if NodeID[c0] = ⊥ ∧ node-id = ⊥ then

15 : try (mem′, ∗) ← *next-members(Ptr[id], orig′, ®p, kp′)

16 : assert mem′ ≠ ⊥
17 : Node[nodeCtr] ← *create-child(Ptr[id], orig′, ®p,mem′, ‘adv’)
18 : (NodeID[c0], node-id) ← (nodeCtr, nodeCtr)
19 : nodeCtr++

20 : else

21 : if NodeID[c0] = ⊥ then (node-id′,NodeID[c0]) ← (node-id, node-id)
22 : else node-id′ ← NodeID[c0]
23 : // After processing, require gid to remain the same and epoch to be incremented by 1.

24 : assert Node[Ptr[id]] .gid = Node[node-id′] .gid
25 : assert Node[Ptr[id]] .epoch = Node[node-id′] .epoch + 1
26 : id𝑐 ← Node[node-id′] .orig; kp𝑐 ← Node[node-id′] .mem[id𝑐]
27 : (mem′, ∗) ← *next-members(Ptr[id], id𝑐 , ®p, kp𝑐)
28 : assert mem′ ≠ ⊥
29 : *valid-successor(node-id′, id𝑐 , ®p,mem′)
30 : if Node[node-id′] .par = ⊥ then *attach(node-id′, id, ®p)
31 : // Mark whether generated messages hide contents (static metadata)

32 : *mark-content-hiden-epoch(Ptr[id])
33 : if ∃p ∈ ®p : Prop[p] .act = ‘rem’-id then Ptr[id] ← ⊥
34 : else

35 : assert (id, ∗) ∈ Node[NodeID[c0]] .mem

36 : // Fetch new dk if key package is updated

37 : if Node[Ptr[id]] .mem[id] ≠ Node[NodeID[c0]] .mem[id] then

38 : kp← Node[NodeID[c0]] .mem[id]

39 : CurrDK[id] ← PendDK[kp]

40 : Ptr[id] ← NodeID[c0]
41 : assert cons-invariant ∧ auth-invariant
42 : return *output-proc(node-id′)

Input (Join, id,𝑤)
1 : req Ptr[id] = ⊥
2 : // If 𝑤 was generated honestly, then use the existing node-id ≠ ⊥.

3 : Send (Join, id, 𝑤) to S and

receive (ack, node-id′, gid′, epoch′, orig′,mem′)
4 : req *succeed-wel(id, 𝑤) ∨ ack
5 : node-id←Wel[id, 𝑤]
6 : if node-id = ⊥ then

7 : if Node[node-id′] ≠ ⊥ then node-id← node-id′

8 : else

9 : Node[nodeCtr] ← *create-root(gid′, epoch′, orig′,mem′, ‘adv’)
10 : node-id← nodeCtr

11 : nodeCtr++

12 : Wel[id, 𝑤] ← node-id

13 : kp← Node[node-id] .mem[id]

14 : CurrDK[id] ← DK[id, kp] // Fetch the registered dk used to join

15 : Ptr[id] ← node-id

16 : assert (id, ∗) ∈ Node[node-id] .mem

17 : assert cons-invariant ∧ auth-invariant
18 : return *output-join(node-id)

Input (Key)
1 : req Ptr[id] ≠ ⊥
2 : if Node[Ptr[id]] .key = ⊥ then *set-key(Ptr[id])
3 : return Node[Ptr[id]] .key

Input (Keymh)
1 : req Ptr[id] ≠ ⊥
2 : if Node[Ptr[id]] .kmh = ⊥ then *set-key(Ptr[id])
3 : return Node[Ptr[id]] .kmh

Input (NextKeymh, c0)
1 : req Ptr[id] ≠ ⊥ ∧ NodeID[c0] ≠ ⊥
2 : req Node[NodeID[c0]] .par = Ptr[id] ∧ Node[NodeID[c0]] .orig = id

3 : if Node[NodeID[c0]] .kmh = ⊥ then *set-key(NodeID[c0])
4 : return Node[NodeID[c0]] .kmh

Figure 13: The ideal static metadata-hiding CGKA functionality F ctxt
CGKA: Process, Join, Key, Keymh, and NextKeymh. The last two

Keymh and NextKeymh are to be used in a higher layer protocol. The modifications in order for the functionality to keep track of
key packages are highlighted in in orange

24

How to Hide MetaData in MLS-Like Secure Group Messaging:
Simple, Modular, and Post-Quantum CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

Input (Expose, id)
1 : if Ptr[id] ≠ ⊥ then

2 : Node[Ptr[id]] .exp +← id

3 : *update-stat-after-exp(id) // Pending secrets are marked as exposed.

4 : svk← Node[Ptr[id]] .mem[id] .svk // Take svk from id’s key package

5 : Send (exposed, id, svk) to FAS
6 : Send (Ptr[id],Node[Ptr[id]]) to S // All information stored in Node[Ptr[id]] is sent to S.

7 : Send CurrDK[id] to S // id’s secret key is sent to S.

8 : Send (exposed, id) to FKS
9 : restrict ∀node-id :

10 : if Node[node-id] .chall = true then safe(node-id) = true

11 : if Node[node-id] .conthide = true then safe(node-id) = true

Input (CorrRand, id, 𝑏), 𝑏 ∈ { ‘good’, ‘bad’ }
1 : RandCorr[id] ← 𝑏

Figure 14: The static metadata-hiding CGKA functionality F ctxt
CGKA: Corruptions from the adversary S. The difference between

those of FCGKA [37] is highlighted in yellow . The modifications in order for the functionality to keep track of key packages
are highlighted in in orange

*create-root(gid, epoch, id,mem, stat)
1 : return new node with par← ⊥, orig← id, gid← gid

epoch← epoch, prop← ⊥,mem← mem, stat← stat.

*create-child(node-id, id, ®p, ®c,mem, stat)
1 : (gid, epoch) ← (Node[Ptr[id]] .gid,Node[Ptr[id]] .epoch)
2 : // Create a new node with an incremented epoch.

3 : return new node with par← node-id, orig← id,

epoch← epoch + 1, prop← ®p, vcom← ®c,
mem← mem, stat← stat.

*create-prop(node-id, id, act, stat)
1 : return new node with par← node-id, orig← id,

act← act, stat← stat.

*fill-prop(®p)
1 : foreach p ∈ ®p s.t. PropID[p] = ⊥ do

2 : Send (Propose, Ptr[id], p) to S and receive (prop-id, orig, act)
3 : if prop-id = ⊥ then

4 : Prop[propCtr] ← *create-prop(Ptr[id], orig, act, ‘adv’)
5 : PropID[p] ← propCtr

6 : propCtr++

7 : // If flagcontHide = true and p hides the same content, then S outputs prop-id ≠ ⊥.

// In this case, check consistency with the exiting node.

8 : else

9 : *consistent-prop(prop-id, orig, act)
10 : PropID[p] ← prop-id

*set-key(node-id)
1 : if safe(node-id) then
2 : Node[node-id] .key←$K
3 : Node[node-id] .chall← true

4 : else

5 : Send (Key, id) to S and receive k

6 : Node[node-id] .key← k

7 : Node[node-id] .chall← false

*mark-content-hiden-epoch(node-id)
1 : if safe(node-id) then
2 : Node[node-id] .conthide← true

3 : else

4 : Node[node-id] .conthide← false

*update-stat-after-exp(id)
1 : foreach prop-id s.t. Prop[prop-id] ≠ ⊥
2 : ∧ Prop[prop-id] .par = Ptr[id]
3 : ∧ Prop[prop-id] .orig = id

4 : ∧ Prop[prop-id] .act = ‘upd’- ∗ do

5 : Prop[prop-id] .stat← ‘bad’

6 : foreach node-id s.t. Node[node-id] ≠ ⊥
7 : ∧ Node[node-id] .par = Ptr[id]
8 : ∧ Node[node-id] .orig = id do

9 : Node[node-id] .stat← ‘bad’

Figure 15: The helper functions for creating and maintaining the history graph.

25

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Keitaro Hashimoto, Shuichi Katsumata, and Thomas Prest

*valid-kp(id, kp)
1 : ack ← query (has-kp, id, kp) to FKS
2 : return ack

*valid-svk(id, svk′)
1 : if Ptr[id] ≠ ⊥ then

2 : svk← Node[Ptr[id]] .mem[id]
3 : if svk′ ≠ ⊥ ∧ svk = svk′ then

4 : return true

5 : ack ← query (has-ssk, id, svk′) to FAS
6 : return ack

*update-kp (id, svk)

1 : if flagcontHide ∧ safe(Ptr[id]) then
2 : ssk← query (get-ssk, svk) to FAS on behalf of id

3 : if RandCorr[id] = ‘good’ then

4 : (kp, dk) ← genKP(id, svk, ssk)
5 : else

6 : Send (rnd, id) to the adversary and receive r

7 : (kp, dk) ← genKP(id, svk, ssk; r)
8 : else

9 : Receive (kp, dk) from S
10 : return (kp, dk)

Figure 16: The helper functions related to keys. The *update-kp function highlighted in in orange is newly introduced to
manage key packages in the functionality.

*output-proc(node-id)
1 : id𝑐 ← Node[node-id] .orig
2 : kp𝑐 ← Node[node-id] .mem[id𝑐]
3 : (∗, propSem) ← *next-members(node-id, id𝑐 ,Node[node-id] .prop, kp𝑐)
4 : return (Node[node-id] .orig, propSem,Node[node-id] .mem)

*output-join(node-id)
1 : gid← Node[node-id] .gid
2 : epoch← Node[node-id] .epoch
3 : mem← Node[node-id] .mem

4 : id𝑐 ← Node[node-id] .orig
5 : return (id𝑐 , gid, epoch,mem)

Figure 17: The helper functions define output of process and join protocols.

26

How to Hide MetaData in MLS-Like Secure Group Messaging:
Simple, Modular, and Post-Quantum CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

*next-members(node-id, id𝑐 , ®p, kp𝑐)
1 : if Node[node-id] ≠ ⊥ ∧ (id𝑐 , ∗) ∈ Node[node-id] .mem

∧ ∀p ∈ ®p : Prop[p] ≠ ⊥ ∧ Prop[p] .par = node-id then

2 : ®p
‘upd’ ∥®p‘rem’

∥®p
‘add’ ← *sort-proposals(®p)

3 : mem← Node[node-id] .mem

4 : mem -← (id𝑐 , ∗) ;mem +← (id𝑐 , kp𝑐)
5 : 𝐿 ← { id𝑐 } // set of updated parties

6 : foreach p ∈ ®p
‘upd’ do

7 : (id𝑠 , ‘upd’-kp) ← (Prop[p] .orig, Prop[p] .act)
8 : if ¬((id𝑠 , ∗) ∈ mem ∧ id𝑠 ∉ 𝐿) then return (⊥,⊥)
9 : mem -← (id𝑠 , ∗) ;mem +← (id𝑠 , kp)
10 : 𝐿 +← id𝑠

11 : foreach p ∈ ®p
‘rem’

do

12 : (id𝑠 , ‘rem’-id𝑡) ← (Prop[p] .orig, Prop[p] .act)
13 : if ¬((id𝑠 , ∗) ∈ mem ∧ (id𝑡 ∈ mem ∧ id𝑡 ∉ 𝐿)) then return (⊥,⊥)
14 : mem -← (id𝑡 , ∗)
15 : foreach p ∈ ®p

‘add’ do

16 : (id𝑠 , ‘add’-id𝑡 -kp𝑡) ← (Prop[p] .orig, Prop[p] .act)
17 : if ¬((id𝑠 , ∗) ∈ mem ∧ (id𝑡 , ∗) ∉ mem) then return (⊥,⊥)
18 : mem +← (id𝑡 , kp𝑡)
19 : 𝑃 ← ((Prop[PropID[p]] .orig, Prop[PropID[p]] .act) : p ∈ ®p

‘upd’ ∥®p‘rem’
∥®p

‘add’)
20 : return (mem, 𝑃)
21 : else

22 : return (⊥,⊥)

*sort-proposals(®p)
1 : ®p

‘upd’, ®p‘rem’
, ®p

‘add’ ← ()
2 : foreach p ∈ ®p do

3 : actp ← Prop[PropID[p]] .act
4 : if actp = ‘upd’- ∗ then

5 : ®p
‘upd’ ++← p

6 : elseif actp = ‘rem’- ∗ then

7 : ®p
‘rem’

++← p

8 : if actp = ‘add’- ∗ then

9 : ®p
‘add’ ++← p

10 : return ®p
‘upd’ ∥®p‘rem’

∥®p
‘add’

Figure 18: The helper functions to determine the group state after applying a commit. *sort-proposals(®p) orders applying
proposals.

*consistent-prop(prop-id, id, act)
1 : assert Prop[prop-id] .par = Ptr[id] ∧ Prop[prop-id] .orig = id

2 : ∧ Prop[prop-id] .act = act

*consistent-com(node-id, id, ®p,mem)
1 : *valid-successor(node-id, id, ®p,mem)
2 : assert RandCorr[id] = ‘bad’ ∧ Node[node-id] .orig = id

*valid-successor(node-id, id, ®p,mem)
1 : assert Node[node-id] ≠ ⊥ ∧ Node[node-id] .mem = mem

∧ Node[node-id] .prop ∈ { ⊥, ®p }
∧ Node[node-id] .par ∈ { ⊥, Ptr[id] }

*attach(node-id, id, ®p)
1 : // Cannot attach to the original honest root node-id = 0

2 : assert node-id ≠ 0

3 : Node[node-id] .par← Ptr[id]
4 : Node[node-id] .prop← ®p

*succeed-com(id, ®p, kp)
1 : return ∀p ∈ ®p : (prop-id := PropID[p] ≠ ⊥ ∧ Prop[prop-id] .stat ≠ ‘adv’)
2 : ∧ *next-members(Ptr[id], id, ®p, kp) ≠ (⊥,⊥)

*succeed-proc(id, c0, ĉ, ®p)
1 : node-id← NodeID[c0]
2 : indexid ← Node[node-id] .indexOf (id)
3 : return node-id ≠ ⊥ ∧ Node[node-id] ≠ ⊥ ∧ Node[node-id] .par = Ptr[id]
4 : ∧ Node[node-id] .prop = ®p ∧ Node[node-id] .stat ≠ ‘adv’

5 : ∧ ∀p ∈ ®p : Prop[PropID[p]] .stat ≠ ‘adv’

6 : ∧ Node[node-id] .vcom[indexid] = ĉ

*succeed-wel(id,𝑤)
1 : node-id←Wel[id, 𝑤]
2 : return node-id ≠ ⊥
3 : ∧ Node[node-id] ≠ ⊥ ∧ Node[node-id] .stat ≠ ‘adv’

4 : ∧ (id, ∗) ∈ (Node[node-id] .mem \ Node[Node[node-id] .par] .mem)

Figure 19: The helper functions for consistency and correctness.

27

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Keitaro Hashimoto, Shuichi Katsumata, and Thomas Prest

auth-invariant

return true iff

(a) ∀node-id with node-id𝑝 := Node[node-id] .par, node-id𝑝 ≠ ⊥
and id := Node[node-id] .orig :

if Node[node-id] .stat = ‘adv’ then

sig-inj-allowed(node-id𝑝 , id) ∧mac-inj-allowed(node-id𝑝) and
(b) ∀p with node-id𝑝 := Prop[p] .par and id := Prop[p] .orig :

if Prop[p] .stat = ‘adv’ then

sig-inj-allowed(node-id𝑝 , id) ∧mac-inj-allowed(node-id𝑝) and
(c) ∀node-id with Node[node-id] .par = ⊥ and id := Node[node-id] .orig :

sig-inj-allowed(node-id, id)

cons-invariant

return true iff

(a) ∀node-id s.t. Node[node-id] .par ≠ ⊥ :

Node[node-id] .prop ≠ ⊥∧
∀p ∈ Node[node-id] .prop :

Prop[PropID[p]] .par = Node[node-id] .par and
(b) ∀id s.t. Ptr[id] ≠ ⊥ : (id, ∗) ∈ Node[Ptr[id]] .mem and

(c) the history graph contains no cycle

Figure 20: The history graph invariants.

28

How to Hide MetaData in MLS-Like Secure Group Messaging:
Simple, Modular, and Post-Quantum CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

C STATIC METADATA-HIDING CGKA:
CONSTRUCTION AND SECURITY PROOF

In this section, we first modify Chained CmPKE of Hashimoto et

al. [36] into a protocol, which we call Chained CmPKEctxt, that
further secures the static metadata. We then prove that Chained
CmPKEctxt UC-realizes the ideal functionality F ctxt

CGKA
. This results

in the first CGKA that provably secures the 2nd layer.

C.1 Constructing Chained CmPKEctxt

We provide the description of Chained CmPKEctxt. The protocol
state and the related helper method are shown in Tabs. 5 to 8. The

main protocol is depicted in Figs. 22 and 23, and the associated

helper functions are depicted in Figs. 25 to 33.

Chained CmPKEctxt is almost identical to Chained CmPKE [37].

The main differences are explained below and highlighted in yellow

in the figures. For a detailed description of the common parts of

the protocols, we refer the readers to [37].

• Chained CmPKEctxt additionally generates an encryption
secret encSecret and a welcome secret welcomeSecret from
the joiner secret.

28 encSecret is used to encrypt the contents
in the proposal and commit messages, excluding the group

identifier gid, epoch, and the message type, which are neces-

sary for message delivery (cf. *enc-prop and *enc-commit
functions in Fig. 32). welcomeSecret is used to encrypt the

28
An encryption secret and welcome secret are also generated in MLS [14, Table 3]

used to secure the static metadata.

group information and the signature in the welcomemessage

(cf. *enc-welcome function in Fig. 33).

• Chained CmPKEctxt creates a separate welcome message for

each new member. In contrast, Chained CmPKE included a

member-independent welcome message𝑤0 that is transmit-

ted to every new group member (see Footnote 9). However,

this will allow the server to infer that the recipients with the

same𝑤0 will join a (possibly unknown) group.

• In Chained CmPKEctxt, parties explicitly sort received pro-

posals. In contrast, Chained CmPKE and MLS’s TreeKEM
implicitly assume that when parties fetch the proposals,

the server sorts the proposals according to predetermined

rules
29
. However, since proposals are encrypted in Chained

CmPKEctxt, the server can no longer sort them. Therefore,

wemake parties sort fetched proposals via *dec-and-sort-proposals
shown in Fig. 32 before they commit or process the proposals.

• (Optional for hiding the dynamicmetadata)ChainedCmPKEctxt

additionally generates an metadata secret metaKey from the

joiner secret. This is used when hiding the dynamicmetadata

(see App. E for more detail).

29
MLS stipulates that proposals are to be applied in the order Update, Remove, Add [14,

Sec. 13.2.2].

29

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Keitaro Hashimoto, Shuichi Katsumata, and Thomas Prest

Table 5: The protocol state. The additional component from [37] are highlighted in yellow .

G.gid The identifier of the group.

G.epoch The current epoch number.

G.confTransHash The confirmed transcript hash.

G.confTransHash-w.o-‘idc’ The confirmed transcript hash without the committer identity.

G.interimTransHash The interim transcript hash for the next epoch.

G.member[∗] A mapping associating party id with its state.

G.memberHash A hash of the public part of G.member[∗].
G.certSvks[∗] A mapping associating the set of validated signature verification keys to each party.

G.pendUpd[∗] A mapping associating the secret keys for each pending update proposal issued by id.
G.pendCom[∗] A mapping associating the new group state for each pending commit issued by id.

G.id The identity of the party.

G.ssk The current signing key.

G.appSecret The current epoch’s shared key.

G.membKey The key used to MAC proposal packages.

G.encSecret The key used to encrypt proposal and commit messages.

G.metaKey The key used to hide the dynamic metadata in a higher level protocol.

G.initSecret The next epoch’s init secret.

Table 6: The party id’s state stored in G.member[id] and helper method.

id The identity of the party.

ek The encryption key of a mPKE scheme.

dk The corresponding decryption key.

svk The signature verification key of a signature scheme.

sig The signature for (id, ek, svk) under the signature singing key corresponding to svk.

kp() Returns (id, ek, svk, sig) (if G.member[id] ≠ ⊥).

Table 7: The helper methods on the protocol state. The additional method from [37] are highlighted in yellow .

G.clone() Returns (independent) copy of G.
G.memberIDs() Returns the list of party ids sorted by dictionary order.

G.memberIDsvks() Returns the list of party ids and its associating svk sorted by dictionary order in the ids.

G.memberPublicInfo() Returns the public part of G.member[∗].
G.groupCont() Returns (G.gid,G.epoch,G.memberHash,G.confTransHash).
G.indexOf (id) Returns the index of id in the sorted member list returned by G.memberIDs().

Table 8: The protocol state maintained only during the proof. The additional component from [37] are highlighted in yellow .

G.joinerSecret The current epoch’s joiner secret.

G.comSecret The current epoch’s commit secret.

G.confKey The key used to MAC for commit and welcome messages.

G.welcomeSecret The key used to encrypt group information and signature included in welcome messages.

G.confTag The MAC tag included either in the commit or welcome message.

G.membTags The set of MAC tags included in the proposal messages.

genSSK()
1 : (svk, ssk) ← SIG.KeyGen(ppSIG)
2 : return (svk, ssk)

genKP(id, svk, ssk)
1 : (ek, dk) ← CmGen(ppCmPKE)
2 : sig← SIG.Sign(ppSIG, ssk, (id, ek, svk))
3 : kp← (id, ek, svk, sig)
4 : return (kp, dk)

Figure 21: Key generation and verification algorithms.

30

How to Hide MetaData in MLS-Like Secure Group Messaging:
Simple, Modular, and Post-Quantum CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

Input (Create, svk)
1 : req G = ⊥ ∧ id = idcreator

2 : G.gid←$ {0, 1}𝜅 ;G.joinerSecret←$ {0, 1}𝜅

3 : G.epoch← 0

4 : G.member[∗] ← ⊥;G.memberHash← ⊥
5 : G.confTransHash-w.o-‘idc’← ⊥
6 : G.confTransHash← ⊥
7 : G.certSvks[∗] ← ∅
8 : G.pendUpd[∗] ← ⊥;G.pendCom[∗] ← ⊥
9 : G.id← id

10 : try ssk← *fetch-ssk-if-nec(G, svk)
11 : (kp, dk) ← genKP(id, svk, ssk)
12 : G ← *assign-kp(G, id, kp)
13 : G.member[id] .dk← dk

14 : G.ssk← ssk

15 : G.memberHash← *derive-member-hash(G)
16 : (G, confKey) ← *derive-epoch-keys(G,G.joinerSecret)
17 : confTag← *gen-conf-tag(G, confKey)
18 : G ← *set-interim-trans-hash(G, confTag)

Input (Propose, ‘upd’-svk)
1 : req G ≠ ⊥
2 : try ssk← *fetch-ssk-if-nec(G, svk)
3 : (kp, dk) ← genKP(id, svk, ssk)
4 : P ← (‘upd’, kp)
5 : p← *frame-prop(G, P)
6 : G.pendUpd[p] ← (ssk, dk)

7 : pctxt ← *enc-prop(G.encSecret, p)

8 : return pctxt

Input (Propose, ‘add’-id𝑡 -kp𝑡)
1 : req G ≠ ⊥ ∧ id𝑡 ∉ G.memberIDs()
2 : req kp𝑡 ≠ ⊥
3 : Send (has-kp, id𝑡 , kp𝑡) to FKS and receive ack

4 : req ack // ack = true implies *validate-kp(kp𝑡 , id𝑡) = true

5 : P ← (‘add’, kp𝑡)
6 : p← *frame-prop(G, P)

7 : pctxt ← *enc-prop(G.encSecret, p)

8 : return pctxt

Input (Propose, ‘rem’-id𝑡)
1 : req G ≠ ⊥ ∧ id𝑡 ∈ G.memberIDs()
2 : P ← (‘rem’, id𝑡)
3 : p← *frame-prop(G, P)

4 : pctxt ← *enc-prop(G.encSecret, p)

5 : return pctxt

Input (Commit, ®pctxt, svk)
1 : req G ≠ ⊥

2 : try ®p← *dec-and-sort-proposals(G.encSecret, ®pctxt)

3 : G′ ← *init-epoch(G)
4 : try (G′, upd, rem, add) ← *apply-props(G,G′, ®p)
5 : req (∗, ‘rem’-id) ∉ rem ∧ (id, ∗) ∉ upd

6 : addedMem← { id𝑡 | (∗, ‘add’-id𝑡 -∗) ∈ 𝑎𝑑𝑑 } // Recipients of the welcome message

7 : receivers← G′ .memberIDs() \ addedMem // Recipients of the new commit secret

8 : try (G′, comSecret, kp, ct0, ®ct = (ĉtid)id∈receivers) ← *rekey(G′, receivers, id, svk)
9 : G′ ← *set-member-hash(G′)
10 : propIDs← ()
11 : foreach p ∈ ®p do propIDs ++← H(p)
12 : 𝐶0 ← (propIDs, kp, ct0)
13 : sig← *sign-commit(G,𝐶0)
14 : G′ ← *set-conf-trans-hash(G,G′, id,𝐶0, sig)
15 : (G′, confKey, joinerSecret) ← *derive-keys(G,G′, comSecret)
16 : confTag← *gen-conf-tag(G′, confKey)
17 : c0 ← *frame-commit(G,𝐶0, sig, confTag)
18 : G′ ← *set-interim-trans-hash(G′, confTag)
19 : ®c ← ∅
20 : foreach id ∈ G.memberIDs() do
21 : if id ∈ receivers then ®c +← (id, ĉtid))
22 : else ®c +← ĉid := (id,⊥))
23 : if add ≠ () then
24 : (G′, 𝑤0, ®𝑤) ← *welcome-msg(G′, addedMem, joinerSecret, confTag)
25 : else

26 : 𝑤0 ← ⊥; ®𝑤 ← ∅
27 : G.pendCom[c0] ← (G′, ®p, upd, rem, add)
28 : // Encrypt messages

29 : (cctxt
0

, ®cctxt) ← *enc-commit(G.c0, ®c)

30 : ®𝑤ctxt ← ∅

31 : welcomeSecret← HKDF.Expand(joinerSecret, ‘wel’)

32 : foreach 𝑤 ∈ ®𝑤 then

33 : 𝑤ctxt ← *enc-welcome(welcomeSecret, 𝑤0, 𝑤)

34 : ®𝑤ctxt +← 𝑤ctxt

35 : return (cctxt
0

, ®cctxt, ®𝑤ctxt)

Figure 22: Staticmetadata-hiding CGKAprotocolChained CmPKEctxt: Create, Propose, and Commit. Themajor changes from [37]
are highlighted in yellow . 31

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Keitaro Hashimoto, Shuichi Katsumata, and Thomas Prest

Input (Process, cctxt
0

, ĉctxt, ®pctxt)
1 : req G ≠ ⊥

2 : try (c0, ĉ) ← *dec-commit(G.encSecret, cctxt
0

, ĉctxt)

3 : try ®p← *dec-and-sort-proposals(G.encSecret, ®pctxt)

4 : (id𝑐 ,𝐶0, sig, confTag) ← *unframe-commit(G, c0)
5 : if id𝑐 = id then

6 : parse (G′, ®p′, upd, rem, add) ← G.pendCom[c0]
7 : req ®p = ®p′

8 : return (id𝑐 , upd ∥rem∥add,G′ .memberIDsvks())
9 : parse (propIDs, kp𝑐 , ct0) ← 𝐶0

10 : parse (id′, ĉtid′) ← ĉ′

11 : req G.id = id′

12 : for 𝑖 ∈ 1, . . . ,
��®p�� do

13 : req H(®p[𝑖]) = propIDs[𝑖]
14 : G′ ← *init-epoch(G)
15 : try (G′, upd, rem, add) ← *apply-props(G,G′, ®p)
16 : req (∗, id𝑐) ∉ rem ∧ (id𝑐 , ∗) ∉ upd

17 : if (∗, ‘rem’-id) ∈ rem then

18 : G′ ← ⊥
19 : return (id𝑐 , upd ∥rem∥add,⊥)
20 : else

21 : G′ ← *set-conf-trans-hash(G,G′, id𝑐 ,𝐶0, sig)
22 : (G′, comSecret) ← *apply-rekey(G′, id𝑐 , kp𝑐 , ct0, ĉtid)
23 : G′ ← *set-member-hash(G′)
24 : (G′, confKey, joinerSecret) ← *derive-keys(G,G′, comSecret)
25 : req *vrf-conf-tag(G′, confKey, confTag)
26 : G′ ← *set-interim-trans-hash(G′, confTag)
27 : return (id𝑐 , upd ∥rem∥add,G′ .memberIDsvks())

Input (Join,𝑤ctxt)
1 : req G = ⊥

2 : (𝑤0, 𝑤) ← *dec-welcome(𝑤ctxt)
3 : parse (ct0, groupInfo, sig) ← 𝑤0

4 : parse (id′, kphash, ĉtid′) ← 𝑤

5 : req id = id′

6 : try (G, confTag, id𝑐) ← *initialize-group(G, id, groupInfo)
7 : req G.confTransHash = H(G.confTransHash-w.o-‘idc’, id𝑐)
8 : req G.interimTransHash = H(G.confTransHash, confTag)
9 : req SIG.Verify(G.member[id𝑐] .svk, sig, (ct0, ĉt, groupInfo))
10 : try G ← *vrf-group-state(G)
11 : G.id← id

12 : svk← G.member[id] .svk
13 : Send (get-ssk, svk) to FAS and receive ssk

14 : G.ssk← ssk

15 : Send (get-dks) to FKS and receive kbs

16 : joinerSecret← ⊥
17 : foreach (kp, dk) ∈ kbs do
18 : if H(kp) = kphash then

19 : req G.member[id] .kp() = kp

20 : G.member[id] .dk← dk

21 : joinerSecret← mDec(dk, ct0, ĉt)
22 : req joinerSecret ≠ ⊥
23 : (G, confKey) ← *derive-epoch-keys(G, joinerSecret)
24 : req *vrf-conf-tag(G, confKey, confTag)
25 : return (id𝑐 ,G.memberIDsvks())

Figure 23: Static metadata-hiding CGKA protocol Chained CmPKEctxt: Process and Join. The major changes from [37] are
highlighted in yellow .

Input (Key)
1 : req G ≠ ⊥
2 : k← G.appSecret

3 : return k

Input (Keymh, c0)
1 : req G ≠ ⊥
2 : kmh ← G.metaKey

3 : return kmh

Input (NextKeymh, c0)
1 : // Returns the pending kmh

′

2 : // for the next epoch

3 : parse (G′, ∗) ← G.pendCom[c0]
4 : kmh

′ ← G′ .metaKey

5 : return kmh
′

Figure 24: Static metadata-hiding CGKA protocol Chained CmPKEctxt: Retrieve group secret key. The major changes from [37]
are highlighted in yellow . Note that Keymh and NextKeymh are used in the higher level metadata-hiding protocol.

32

How to Hide MetaData in MLS-Like Secure Group Messaging:
Simple, Modular, and Post-Quantum CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

*fetch-ssk-if-nec(G, svk′)
1 : svk← G.member[G.id] .svk
2 : if svk ≠ svk′ then

3 : Send (get-ssk, svk) to FAS and
4 : receive ssk

5 : else

6 : ssk← G.ssk

7 : return ssk

*validate-kp(G, kp, id)
1 : parse (id′, ek, svk, sig) ← kp

2 : req id = id′

3 : if svk ∉ G.certSvks[id] then
4 : Send (verify-cert, id′, svk) to FAS

and receive succ

5 : req succ

6 : G.certSvks[id] +← svk

7 : req SIG.Verify(ppSIG, svk, sig, (id, ek, svk))
8 : return G

*assign-kp(G, kp)
1 : parse (id, ek, svk, sig) ← kp

2 : G.member[id] .ek← ek

3 : G.member[id] .svk← svk

4 : G.member[id] .sig← sig

5 : return G

Figure 25: Helper functions: Key material related.

*init-epoch(G)
1 : G′ ← G.clone()
2 : G′ .epoch← G.epoch + 1
3 : G′ .pendUpd[∗],G′ .pendCom[∗] ← ⊥
4 : return G′

*rekey(G′, receivers, id, svk)
1 : try ssk← *fetch-ssk-if-nec(G′, svk)
2 : (kp, dk) ← genKP(id, svk, ssk)
3 : G′ ← *assign-kp(G′, kp)
4 : G′ .ssk← ssk

5 : G′ .member[id] .dk← dk

6 : comSecret←$ {0, 1}𝜅

7 :
®ek← (G.member[id′] .ek)id′∈receivers

8 : (ct0, ®ct = (ĉtid′)id′∈receivers) ← mEnc(ppmPKE,
®ek, comSecret)

9 : return (G′, comSecret, kp, ct0, ®ct)

*apply-rekey(G′, id𝑐 , kp𝑐 , ct0, ĉt)
1 : dk← G′ .member[G′ .id] .dk
2 : comSecret← mDec(dk, ct0, ĉt)
3 : try G′ ← *validate-kp(G′, kp𝑐 , id𝑐)
4 : G′ ← *assign-kp(G′, kp𝑐)
5 : return (G′, comSecret)

*apply-props(G,G′, ®p)
1 : upd, rem, add ← ()
2 : foreach p ∈ ®p do

3 : try (id𝑠 , P) ← *unframe-prop(G, p)
4 : parse (type, val) ← P

5 : if type = ‘upd’ then

6 : req id𝑠 ∈ G.memberIDs()
7 : req (id𝑠 , ∗) ∉ upd ∧ rem = () ∧ add = ()
8 : try G′ ← *validate-kp(G′, val, id𝑠)
9 : G′ ← *assign-kp(G′, val)
10 : if id𝑠 = G.id then

11 : parse (ssk, dk) ← G.pendUpd[p]
12 : G′ .ssk← ssk

13 : G′ .member[G.id] .dk← dk

14 : svk← G′ .member[id𝑠] .svk
15 : upd ++← (id𝑠 , ‘upd’-svk)
16 : elseif type = ‘rem’ then

17 : parse id𝑡 ← val

18 : req id𝑡 ≠ id𝑠 ∧ id𝑡 ∈ G.memberIDs()
19 : req (id𝑡 , ∗) ∉ upd ∧ add = ()
20 : G′ .member[id𝑡] ← ⊥
21 : rem ++← (id𝑠 , ‘rem’-id𝑡)
22 : elseif type = ‘add’ then

23 : (id𝑡 , ∗, ∗, ∗) ← val

24 : req id𝑡 ∉ G.memberIDs()
25 : try G′ ← *validate-kp(G′, val, id𝑡)
26 : G′ ← *assign-kp(G′, val)
27 : add ++← (id𝑠 , ‘add’-val)
28 : else

29 : return ⊥
30 : return (G′, upd, rem, add)

Figure 26: Helper functions: Commit and Process related.

33

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Keitaro Hashimoto, Shuichi Katsumata, and Thomas Prest

*welcome-msg(G′, addedMem, joinerSecret, confTag)
1 :

®ek← (G′ .member[id𝑡] .ek)id𝑡 ∈addedMem do

2 : (ct0, ®ct = (ĉtid𝑡)id𝑡 ∈addedMem) ← mEnc(ppmPKE,
®ek, joinerSecret)

3 : groupInfo← (G′ .gid,G′ .epoch,
4 : G′ .memberPublicInfo(),G′ .memberHash,

5 : G′ .confTransHash-w.o-‘idc’,G′ .confTransHash,

6 : G′ .interimTransHash, confTag,G′ .id)
7 : sig← SIG.Sign(ppSIG,G′ .ssk, (ct0, groupInfo))
8 : 𝑤0 ← (ct0, groupInfo, sig)
9 : ®𝑤 ← ∅
10 : foreach id𝑡 ∈ addedMem do

11 : kphash𝑡 ← H(G′ .member[id𝑡] .kp())
12 : ®𝑤 +← 𝑤id𝑡 = (id𝑡 , kphash𝑡 , ĉtid𝑡)
13 : return (G′, 𝑤0, ®𝑤)

*initialize-group(G, id, groupInfo)
1 : parse (gid, epoch,member,memberHash,

confTransHash-w.o-‘idc’, confTransHash,

interimTransHash, confTag, id𝑐) ← groupInfo

2 : (G.gid,G.epoch,G.member,G.memberHash,

G.confTransHash-w.o-‘idc’,G.confTransHash,

G.interimTransHash) ← (gid, epoch,member,

memberHash, confTransHash-w.o-‘idc’,

confTransHash, interimTransHash)
3 : G.certSvks[∗] ← ∅
4 : G.pendUpd[∗] ← ⊥;G.pendCom[∗] ← ⊥
5 : G.id← id

6 : return (G, confTag, id𝑐)

*vrf-group-state(G)
1 : req G.memberHash = *derive-member-hash(G)
2 : mem← G.memberIDs()
3 : foreach id ∈ mem do

4 : kp← G.member[id] .kp()
5 : try G ← *validate-kp(G, kp, id)
6 : return G

Figure 27: Helper functions: Join related.

*gen-conf-tag(G, confKey)
1 : return MAC.TagGen(confKey,G.confTransHash)

*vrf-conf-tag(G, confKey, confTag)
1 : return MAC.TagVerify(confKey, confTag,G.confTransHash)

Figure 28: Helper function: Confirmation tag.

*set-member-hash(G)
1 : G.memberHash← *derive-member-hash(G)
2 : return G

*derive-member-hash(G)
1 : KP← () ;mem← G.memberIDs() // mem is sorted by dictionary order

2 : foreach id ∈ mem do

3 : KP ++← G.member[id] .kp()
4 : return H(KP)

*set-conf-trans-hash(G,G′, id𝑐 ,𝐶0, sig)
1 : comCont← (G.gid,G.epoch, ‘commit’,𝐶0, sig)
2 : G′ .confTransHash-w.o-‘idc’← H(G.interimTransHash, comCont)
3 : G′ .confTransHash← H(G′ .confTransHash-w.o-‘idc’, id𝑐)
4 : return G′

*set-interim-trans-hash(G′, confTag)
1 : G′ .interimTransHash← H(G′ .confTransHash, confTag)
2 : return G′

Figure 29: Helper function: Member hash and transcript
hash.

*derive-keys(G,G′, comSecret)
1 : 𝑠 ← HKDF.Extract(G.initSecret, comSecret)
2 : joinerSecret← HKDF.Expand(𝑠, ‘joi’)
3 : (G′, confKey) ← *derive-epoch-keys(G′, joinerSecret)
4 : return (G′, confKey, joinerSecret)

*derive-epoch-keys(G′, joinerSecret)
1 : confKey← HKDF.Expand(joinerSecret,G′ .groupCont() ∥‘conf’)
2 : G′ .appSecret← HKDF.Expand(joinerSecret,G′ .groupCont() ∥‘app’)
3 : G′ .membKey← HKDF.Expand(joinerSecret,G′ .groupCont() ∥‘memb’)

4 : G′ .encSecret← HKDF.Expand(joinerSecret,G′ .groupCont() ∥‘enc’)

5 : G′ .metaKey← HKDF.Expand(joinerSecret,G′ .groupCont() ∥‘meta’)

6 : G′ .initSecret← HKDF.Expand(joinerSecret,G′ .groupCont() ∥‘init’)
7 : return (G′, confKey)

Figure 30: Helper function: Key scheduling. The major
changes from [37] are highlighted in yellow .

34

How to Hide MetaData in MLS-Like Secure Group Messaging:
Simple, Modular, and Post-Quantum CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

*frame-prop(G, P)
1 : propCont← (G.groupCont(),G.id, ‘proposal’, P)
2 : sig← SIG.Sign(ppSIG,G.ssk, propCont)
3 : membTag← MAC.TagGen(G.membKey, (propCont, sig))
4 : p← (G.id, P, sig,membTag)
5 : return (G.gid,G.epoch, ‘proposal’, p)

*unframe-prop(G, p)
1 : parse (gid, epoch, contType, p) ← p

2 : parse (id𝑠 , P, sig,membTag) ← p

3 : req contType = ‘proposal’ ∧ gid = G.gid ∧ epoch = G.epoch

4 : propCont← (G.groupCont(), id𝑠 , ‘proposal’, P)
5 : req G.member[id𝑠] ≠ ⊥

∧ SIG.Verify(ppSIG,G.member[id𝑠] .svk, sig, propCont)
∧MAC.TagVerify(G.membKey,membTag, (propCont, sig))

6 : return (id𝑠 , P)

*sign-commit(G,𝐶0)
1 : comCont← (G.groupCont(),G.id, ‘commit’,𝐶0)
2 : sig← SIG.Sign(ppSIG,G.ssk, comCont)
3 : return sig

*frame-commit(G,𝐶0, sig, confTag)
1 : c0 ← (G.id,𝐶0, sig, confTag)
2 : return (G.gid,G.epoch, ‘commit’, c0)

*unframe-commit(G, c0)
1 : parse (G.gid,G.epoch, ‘commit’,CTc0) ← c0
2 : parse (id𝑐 ,𝐶0, sig, confTag) ← c0
3 : req contType = ‘commit’ ∧ gid = G.gid ∧ epoch = G.epoch

4 : comCont← (G.groupCont(), id𝑐 , ‘commit’,𝐶0)
5 : svk𝑐 ← G.member[id𝑐] .svk
6 : req G.member[id𝑐] ≠ ⊥ ∧ SIG.Verify(ppSIG, svk𝑐 , sig, comCont)
7 : return (id𝑐 ,𝐶0, sig, confTag)

Figure 31: Helper function: Frame and unframe packets.

*enc-prop(encSecret, p)
1 : parse (gid, epoch, ‘proposal’, p) ← p

2 : CTp ← SKE.Enc(encSecret, p)
3 : return pctxt := (gid, epoch, ‘proposal’,CTp)

*dec-prop(encSecret, pctxt)
1 : parse (gid, epoch, ‘proposal’,CTp) ← pctxt

2 : p← SKE.Dec(encSecret,CTp)
3 : return p := (gid, epoch, ‘proposal’, p)

*enc-commit(encSecret, c0, ®c)
1 : parse (gid, epoch, ‘commit’, c0) ← c0
2 : CTc0 ← SKE.Enc(encSecret, c0)
3 : ®cctxt ← ∅
4 : foreach ĉ ∈ ®c do
5 : ®cctxt +← SKE.Enc(encSecret, ĉ)
6 : cctxt

0
← (G.gid,G.epoch, ‘commit’,CTc0)

7 : return (cctxt
0

, ®cctxt)

*dec-commit(encSecret, cctxt
0

, ĉctxt)
1 : parse (gid, epoch, ‘commit’,CTc0) ← cctxt

0

2 : c0 ← SKE.Dec(encSecret,CTc0)
3 : ĉ ← SKE.Dec(encSecret, ĉctxt)
4 : c0 ← (gid, epoch, ‘commit’, c0)
5 : return (c0, ĉ)

*dec-and-sort-proposals(encSecret, ®pctxt)
1 : ®p, ®p

‘rem’
, ®p

‘upd’, ®p‘add’ ← ()
2 : foreach pctxt ∈ ®pctxt do
3 : try p← *dec-prop(encSecret, pctxt)
4 : try type← *extract-proposal-type(p)
5 : if type = ‘upd’ then

6 : ®p
‘upd’ ++← p

7 : elseif type = ‘rem’ then

8 : ®p
‘rem’

++← p

9 : elseif type = ‘add’ then

10 : ®p
‘add’ ++← p

11 : else return ⊥
12 : // Return sorted proposal list

13 : return ®p
‘upd’ ∥®p‘rem’

∥®p
‘add’

*extract-proposal-type(p)
1 : parse (gid, epoch, contType, p) ← p

2 : parse (id𝑠 , P, sig,membTag) ← p

3 : parse (type, val) ← P

4 : return type

Figure 32: Helper functions unique to Chained CmPKEctxt: Encrypt and decrypt proposals and commits. The major changes
from [37] are highlighted in yellow . *sort-proposals decrypts proposals and sort them following the order of MLS specifica-
tion [14, Sec. 13.2.2].

35

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Keitaro Hashimoto, Shuichi Katsumata, and Thomas Prest

*enc-welcome(welcomeSecret,𝑤0,𝑤)
1 : parse (id𝑡 , kphash𝑡 , ĉt) ← 𝑤0

2 : parse (ct0, groupInfo, sig) ← 𝑤

3 : welcomeSecretid𝑡 ← HKDF.Expand(welcomeSecret, id𝑡)
4 : CT← SKE.Enc(welcomeSecretid𝑡 , (groupInfo, sig))
5 : return 𝑤ctxt

:= (id𝑡 , (kphash𝑡 , ct0, ĉt),CT)

*dec-welcome(𝑤ctxt)
1 : parse (id𝑡 , (kphash, ct0, ĉt),CT) ← 𝑤ctxt

2 : Send (get-dks) to FKS and receive kbs

3 : joinerSecret, kpid, dkid ← ⊥
4 : foreach (kp, dk) ∈ kbs do
5 : if H(kp) = kphash then

6 : (kpid, dkid) ← (kp, dk)
7 : joinerSecret← mDec(dk, ct0, ĉt)
8 : break

9 : req joinerSecret ≠ ⊥
10 : welcomeSecret← HKDF.Expand(joinerSecret, ‘wel’)
11 : welcomeSecretid𝑡 ← HKDF.Expand(welcomeSecret, id𝑡)
12 : (groupInfo, sig) ← SKE.Dec(welcomeSecretid𝑡 ,CT)
13 : 𝑤0 ← (ct0, groupInfo, sig)
14 : 𝑤 ← (id𝑡 , kphash𝑡 , ĉt)
15 : return (𝑤0, 𝑤)

Figure 33: Helper functions unique toChainedCmPKEctxt: Encrypt and decrypt welcomemessages. Themajor changes from [37]
are highlighted in yellow .

36

How to Hide MetaData in MLS-Like Secure Group Messaging:
Simple, Modular, and Post-Quantum CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

C.2 Safety Predicates and Leakage Functions
As explained inApp. B.2, to formally prove thatChainedCmPKEctxt

UC-realizes the ideal functionality F ctxt
CGKA

, we must first specify

the safety predicates safe,mac-inj-allowed, and sig-inj-allowed,
and the leakage functions *leak-create, *leak-prop, *leak-com,

*leak-wel, and *leak-proc.
These are formally defined in Figs. 34 and 35. The definition of

the safety predicates safe,mac-inj-allowed and sig-inj-allowed
is identical to those considered by Chained CmPKE [37, Fig. 28],

modulo the syntactical difference in the definition of node pointers

(see Sec. 3.2).

The leakage functions *leak-create, *leak-prop, *leak-com,

*leak-wel, and *leak-proc are new to the definition of F ctxt
CGKA

and dictate the amount of static metadata leaked to the server.

Since the concrete leakage information depends on the concrete

choice of CGKA, our choice only captures the leakage of Chained
CmPKEctxt. Namely, other protocols such as the ciphertext variant

of TreeKEM used inMLSCiphertext may require a slightly more

complex leakage function. We provide some discussion in Sec. 7.

Below, we explain the specific choice of our leakage functions in

more detail.

*leak-create(id, svk): This defines the information leaked when

a new group is created. In the previous (non-metadata-hiding)

Chained CmPKE, the simulator was given the identity of the party

id creating the group and its corresponding signature verification

key svk to simulate the group identifier gid. In other words, gid
leaked information on (id, svk). In Chained CmPKEctxt, the simu-

lator is asked to simulate gid without giving any other information.

This models the fact that when a new group is created, the server

cannot guess who created it. As mentioned in the introduction,

this could potentially open the door to a DoS attack on the server.

One way to solve this would be to use standard anonymous cre-

dentials [26]. We leave such direction of research as an important

future work.

*leak-prop(id, act): This defines the information that is leaked

from proposals p. In Chained CmPKE, the simulator was given

the identity of the party id creating the proposal, the commit node

Ptr[id] that locates id in the history graph, and the action act of
the proposal to simulate the proposal p. Here, when there is no fork

in the main group, then Ptr[id] essentially pinpoints the specific

epoch of the group. In case there is a fork, then epoch alone is not

sufficient to identify where party id is located, in which case we

need the exact proposal node Ptr[id]. In other words, proposal p
leaked the proposing party id and the action act, where note that
p must always include Ptr[id] (which is (gid, epoch) essentially)
for the server to deliver p to the appropriate member in a specific

epoch.

In Chained CmPKEctxt, we define *leak-prop(id, act) to only

output Ptr[id] and the length of |id| and |act|. This models the

fact that proposals p only leak the specific group by which p is

supposed to be processed. Moreover, in case the size of each action

act is different, this leaks the action type. However, considering

that the addition or removal of a group member is noticeable from

the server (since it changes the size of commit messages), hiding

the type of action may not add as much security as one expects.

*leak-com(id, ®p, svk): This defines the information that is leaked

from commits (c0, ®c = (̂cid′)id′). In Chained CmPKE, the simulator

was given the identity of the party id creating the commit; the

commit node Ptr[id] that locates id in the history graph; the list of

proposals ®p that is going to be committed; the new signing key svk
of id; and the list of current membersmem in the group to simulate

the commit (c0, ®c). In other words, a commit leaks the committer

identity id, its signing key svk, and the current list of members

mem.

In Chained CmPKEctxt, we define *leak-com(id, ®p, svk) to only
output (Ptr[id], |id|, ®p, |svk|, |mem|). Note that similarly to propos-

als, Ptr[id] cannot be hidden. Moreover, ®p is guaranteed to hide the
static metadata from above, we can provide this to the simulator.

Finally, the size of the current member |mem| would necessarily

leak from commit messages when using Chained CmPKE since

®c scales linearly with the group size. While we could apply some

padding to hide the group size from the commit, the server can

infer the group size when selective downloading is performed; if 𝑁

distinct ĉ were downloaded out of𝑀 ≥ 𝑁 commits (that includes

the padded garbage commits), then the server can guess that the

group size was 𝑁 .

*leak-wel(node-idcur, node-idnext, id𝑡): This defines the informa-

tion that is leaked from welcome messages𝑤 . In Chained CmPKE,
the simulator was given the key package kp𝑡 of the added member

id𝑡 ; the commit node of the next epoch node-idnext; and all the

information stored on the commit node Node[node-idnext] to sim-

ulate the welcome message𝑤 . In other words, welcome messages

leak the group identifier gid, the next epoch, the identity id of the

party who created the welcome message, the size of the member of

the next epoch, and so on.

InChainedCmPKEctxt, we define *leak-wel(node-idcur, node-idnext,
id𝑡) to only output (kp𝑡 , |gid| , |epoch| , |id| , |mem|). Here, we in-
clude kp𝑡 in clear since Chained CmPKEctxt (and MLSCiphertext)
includes the hash of the key package of id𝑡 in the welcome message

in the clear. Namely, in case id𝑡 creates many key packages, the

simulator must know which kp𝑡 is used to simulate the welcome

message.

We note that the reason why our protocol andMLSCiphertext
includes a hash kphash𝑡 of kp𝑡 in the welcome message is for

efficiency. The added party, which may have created many key

packages for different groups, can check which key package to

use by simply finding the key package that equals the hash value

kphash𝑡 . Otherwise, the party must go through all the decryption

keys associated with each key package it has and try to see whether

the welcome message can be decrypted correctly. We also note that

id𝑡 is always leaked from the welcome message since otherwise,

the server will not know the destination of the welcome message,

i.e., it cannot deliver it.

*leak-proc(id): This defines the information that is leaked from a

party-dependent commit (c0, ĉ) and a list of proposals ®p. InChained
CmPKE, the simulator was given the identity of the party id pro-

cessing the commit and the commit node Ptr[id] that locates id in

the history graph to decide whether (c0, ĉ, ®p) should be processed

correctly by a party id.
InChained CmPKEctxt, we define *leak-proc(id) to only output

(Ptr[id], indexid). As explained above, Ptr[id] cannot be hidden

37

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Keitaro Hashimoto, Shuichi Katsumata, and Thomas Prest

since this information is required for id to retrieve the uploaded

commit and proposals from the server. Moreover, since selective

downloading is performed, ĉ must leak the position of the party id
in the group (assuming that id can process (c0, ĉ) correctly).

38

How to Hide MetaData in MLS-Like Secure Group Messaging:
Simple, Modular, and Post-Quantum CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

Knowledge of party’s secrets.

know(node-id, id) ⇐⇒
(a) id ∈ Node[node-id] .exp∨
(b) *secrets-injected(node-id, id)∨
(c) (Node[node-id] .par ≠ ⊥ ∧ know(Node[node-id] .par, id))
∧ ¬*secrets-replaced(node-id, id)∨

(d) ∃node-id′ : (Node[node-id′] .par = node-id ∧ know(node-id′, id)
∧ ¬*secrets-replaced(node-id′, id))

*secrets-injected(node-id, id) ⇐⇒
(a) (Node[node-id] .orig = id ∧ Node[node-id] .stat ≠ ‘good’)∨
(b) ∃p ∈ Node[node-id] .prop with prop-id := PropID[p] :
(Prop[prop-id] .act = ‘upd’- ∗ ∧Prop[prop-id] .orig = id

∧ Prop[prop-id] .stat ≠ ‘good’)∨
(c) ∃p ∈ Node[node-id] .prop with prop-id := PropID[p] :
(Prop[prop-id] .act = ‘add’-id- ∗ -svk- ∗ ∧svk ∈ ExposedSvk)

*secrets-replaced(node-id, id) ⇐⇒
Node[node-id] .orig = id∨
∃p ∈ Node[node-id] .prop with prop-id := PropID[p] :
Prop[prop-id] .act ∈ { ‘add’-id-∗, ‘rem’-id } ∨
∃p ∈ Node[node-id] .prop with prop-id := PropID[p] :
(Prop[prop-id] .act = ‘upd’- ∗ ∧Prop[prop-id] .orig = id)

Knowledge of epoch secrets.

know(node-id, ‘epoch’) ⇐⇒ Node[node-id] .exp ≠ ∅ ∨ *can-traverse(node-id)
*can-traverse(node-id) ⇐⇒
(a) ∃p ∈ Node[node-id] .prop :

(Prop[PropID[p]] .act = ‘add’-id- ∗ -svk- ∗ ∧svk ∈ ExposedSvk)
(b) *reused-welcome-key-leaks(node-id)∨
(c) Node[node-id] .stat = ‘bad’

∧ ∃p ∈ Node[node-id] .prop : Prop[PropID[p]] .act = ‘add’- ∗ ∨
(d) (Node[node-id] .par = ⊥ ∨ know(Node[node-id] .par, ‘epoch’))∧
∃(id, ∗) ∈ Node[node-id] .mem : know(node-id, id)

*reused-welcome-key-leaks(node-id) ⇐⇒
∃id, p ∈ Node[node-id] .prop : Prop[p] .act = ‘add’-id- ∗ ∧
∃node-id𝑑 : node-id𝑑 is a descendant of node-id ∧ id ∈ Node[node-id𝑑] .exp∧
no node node-idℎ exists on node-id–node-id𝑑 path

s.t. *secrets-replaced(node-idℎ, id) = true

Safe and can-inject.

safe(node-id) ⇐⇒ know(node-id, ‘epoch’)
sig-inj-allowed(node-id, id) ⇐⇒ Node[node-id] .mem[id] ∈ ExposedSvk
mac-inj-allowed(node-id) ⇐⇒ know(node-id, ‘epoch’)

Figure 34: The safety predicate for Chained CmPKEctxt. This is identical to [37, Fig. 28] modulo the syntactical difference in
the definition of node pointers.

*leak-create(id, svk)
1 : if flagcontHide then

2 : return ⊥
3 : else

4 : return (id, svk)

*leak-prop(id, act)
1 : if flagcontHide ∧ safe(Ptr[id]) then
2 : return (Ptr[id], |id | , |act |)
3 : else

4 : return (Ptr[id], id, act)

*leak-com(id, ®p, svk)
1 : mem← Node[Ptr[id]] .mem

2 : if flagcontHide ∧ safe(Ptr[id]) then
3 : return (Ptr[id], |id | , ®p, |svk | , |mem |)
4 : else

5 : return (Ptr[id], id, ®p, svk,mem)

*leak-proc(id)
1 : indexid ← Node[Ptr[id]] .indexOf (id)
2 : if flagcontHide ∧ safe(Ptr[id]) then
3 : return (Ptr[id], indexid)
4 : else

5 : return (Ptr[id], id)

*leak-wel(node-idcur, node-idnext, id𝑡)
1 : gid← Node[node-idnext] .gid
2 : epoch← Node[node-idnext] .epoch
3 : id𝑐 ← Node[node-idnext] .orig
4 : mem← Node[node-idnext] .mem

5 : if flagcontHide ∧ safe(node-idnext) then
6 : return (kp𝑡 , |gid | , |epoch | , |id𝑐 | , |mem |)
7 : else

8 : return (kp𝑡 , node-idnext,Node[node-idnext])

Figure 35: Leakage functions for Chained CmPKEctxt.

39

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Keitaro Hashimoto, Shuichi Katsumata, and Thomas Prest

C.3 Security of Chained CmPKEctxt

The following theorem establishes that Chained CmPKEctxt UC-
realizes the ideal functionality F ctxt

CGKA
.

Theorem C.1. Assuming that mPKE is IND-CCA secure, SIG
is sEUF-CMA secure, and SKE is IND-CCA secure and has key-
committing property, our CGKA protocol Chained CmPKEctxt adap-
tively and securely realizes the ideal functionality F ctxt

CGKA in the
(FAS, FKS,GRO)-hybrid model.

Here, F ctxt
CGKA is defined with respect to the safety predicates and

leakage functions in Figs. 34 and 35. Moreover, calls to the hash func-
tion H, HKDF, andMAC are replaced by calls to the global random
oracle GRO.

C.3.1 Proof Overview. The proof consists of a sequence of hybrids
where we gradually modify the protocol Chained CmPKEctxt into
the ideal functionality F ctxt

CGKA
. As explained in Sec. 3.2, with some

work, we can reuse a great part of the proof by Hashimoto et al. [36].

The key observation is that when the leakage functions *leak-create,
*leak-prop, *leak-com, *leak-wel and *leak-proc are defined to
leak all the static metadata (i.e., flagcontHide = false), then F ctxt

CGKA

is almost identical to the ideal functionality FCGKA that does not

hide the static metadata. The only difference is that the proposals

and commits in FCGKA leak the static metadata, while F ctxt
CGKA

en-

crypts them. To this end, using the fact that the simulator S knows

the encryption key (which follows from flagcontHide = false),

the simulator S for F ctxt
CGKA

will internally run the simulator S̃ for

FCGKA defined by Hashimoto et al. [36].

In a bit more detail, our proof goes through the sameHybrids 1 to 6

as in [36, Theorem E.1]. At Hybrid 6, the application keys for the

nodes with safe = true will become indistinguishable from ran-

dom — this is the place where [36, Theorem E.1] ends. We then

continue to complete the proof by further adding a new Hybrid 7,

where flagcontHide is switched to true. This hybrid is part of our

security proof that takes care of the static metadata. In each Hy-

brid 𝑖 for 𝑖 ∈ [6], we define the simulator S𝑖 that internally runs S̃𝑖
defined in [36, Theorem E.1]. Informally, whenever S̃𝑖 takes as in-
put a (non-static metadata-hiding) proposal, commit, or a welcome

message, S𝑖 first decrypts the (static metadata-hiding) proposal,

commit, and welcome message before feeding it into S̃𝑖 . On the

other hand, if S̃𝑖 outputs a (non-static metadata-hiding) content,

then S𝑖 encrypts them before outputting them to F ctxt
CGKA

or the

environmentZ. Here, since flagcontHide = false, we can assume

S𝑖 knows all the encryption/decryption key to perform the above

procedure.

While the high-level idea of piggybacking on the prior proof

of Hashimoto et al. [36] sounds straightforward, several technical

issues make the above non-trivial. This non-triviality is caused by

the difference of the semantics of the nodes in the history graph

in our new ideal functionality F ctxt
CGKA

and the prior ideal function-

ality FCGKA. For instance, when the environment Z invokes id
on input (Commit, ®p, svk), the simulator in [36] (roughly) outputs

(ack, rt, c0, ®c), where rt ∈ N. Our simulator must reinterpret this

and output an appropriate node-id such that the history graph de-

fined with respect to c0 remains consistent with the history graph

defined with respect to node-id. In particular, the most non-trivial

part of reusing the proof by Hashimoto et al. [36] is to check that

the proof moves from Hybrid 2 to 3 in [36, Theorem E.1], which

concerns the consistency of the history graph, translates to our

setting.

We also note that while the proof of Hashimoto et al. [36] re-

quired an mPKE that is IND-CCA secure with adaptive corruptions,
we only require a standard mPKE. As explained in Sec. 3.2, this

is due to the added restriction on the adversary (see Fig. 14 and

App. B.2), which is necessary for any natural static metadata-hiding

CGKA in order not to trivially win the security game. Specifically,

the exponential loss appearing in the proof of moving from Hy-

brid 5 to Hybrid 6 in [36] disappears by considering the restricted

adversary defined in F ctxt
CGKA

. Moreover, while Hashimoto et al. [36]

used a committing mPKE to construct Chained CmPKE, they men-

tioned in Footnote 5 that they are not required for the proof to go

through. In this work, we thus rely on the more simpler mPKE.
Finally, we prove the indistinguishability of the real and ideal pro-

tocols assuming that the adversary cannot inject bad randomness.

That is, RandCorr is always set to ‘good’ in the ideal functionality

F ctxt
CGKA

. To be more precise, our proof up till Hybrid 6 allows the

adversary to inject bad randomness. We only restrict the adversary

when moving to Hybrid 7 — this is where we explicitly use the

group secret to perform symmetric key encryption to hide the static

metadata. This restriction is also done in recent work by Alwen et

al. [9], where they disallow the adversary to manipulate the ran-

domness used for the symmetric key encryption. We leave security

analysis of such types of attacks as future work.

C.3.2 Proof of Thm. C.1. Wenow provide the full proof of Thm. C.1.

Proof. We consider the following sequence of hybrids. While

the environmentZ interacts with Chained CmPKEctxt in Hybrid 1,

it interacts with the ideal functionality F ctxt
CGKA

in Hybrid 7. As

explained above, Hybrids 1 to 6 are defined identically to [36],

where the only difference is in the definition of the simulator S in

each hybrid. Below, we first define all the hybrids and then explain

how the simulators are defined.

Hybrid 1. This is the real world, wherewemake a syntactic change.

We consider a simulatorS1 that interacts with a dummy func-

tionality F
dummy

. F
dummy

sits between the environmentZ
and S1, and relays any message fromZ to S1 without mod-

ifying them. S1 internally simulates the real-world parties

and adversary A by using the messages sent from F
dummy

.

From A’s point of view, S1 is the environmentZ.

Hybrid 2. This hybrid concerns the authentication service and

key service. We replace (FAS, FKS) with these ideal version

(F IW

AS
, F IW

KS
). Since these functions are not accessible byZ,

this modification is undetectable byZ. Thus, the view ofZ
in Hybrid 1 and Hybrid 2 are identical.

Hybrid 3. This hybrid concerns the correctness and consistency

guarantees. We replace F
dummy

with a variant of F ctxt
CGKA

,

denoted as F ctxt
CGKA,3

, where safe (resp. sig-inj-allowed and

mac-inj-allowed) always returns false (resp. true) and flagcontHide
is set to false. In other words, all application secrets are set

by the simulator, injections are always allowed, and the con-

fidentiality of messages is not considered. The simulator S3
is identical to S2.

40

How to Hide MetaData in MLS-Like Secure Group Messaging:
Simple, Modular, and Post-Quantum CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

Hybrid 4. This hybrid concerns the security of the signature scheme.

WemodifyF ctxt
CGKA,3

to use the original sig-inj-allowed pred-
icate, denoted as F ctxt

CGKA,4
. F ctxt

CGKA,4
halts if a proposal, a

commit, or a welcome message is injected when the sender’s

signing key is not exposed. The simulator S4 is identical to
S3.

Hybrid 5. This hybrid concerns the security of theMAC scheme.

We modify F ctxt
CGKA,4

to use the original mac-inj-allowed
predicate, denoted as F ctxt

CGKA,5
. F ctxt

CGKA,5
halts if a proposal

or a commit are injected when the corresponding MAC key

is not exposed. The simulator S5 is identical to S4.
Hybrid 6. This hybrid concerns the confidentiality of the applica-

tion secrets. We modify F ctxt
CGKA,5

where it uses the original

safe predicate, denoted as F ctxt
CGKA,6

. The simulatorS6 is iden-
tical to S5 except that it sets only those application secrets

for which safe is false. (Note that this functionality roughly

corresponds to the previous ideal functionality FCGKA where

the security of the static metadata is not considered.)

Hybrid 7. This hybrid concerns the confidentiality of proposal,

commit and welcome messages. We modify F ctxt
CGKA,6

so that

flagcontHide is set to true, denoted as F ctxt
CGKA,7

. The simu-

lator S7 is identical to S6 except that it simulates the pro-

tocol executions with the leakage information defined by

*leak-create, *leak-prop, *leak-com, *leak-wel, and *leak-proc.
The functionality F ctxt

CGKA,7
corresponds to the ideal function-

ality F ctxt
CGKA

.

We show the indistinguishability of Hybrids 2 to 7 in Lems. C.2

and C.7. This completes the proof of the main theorem. □

C.3.3 From Hybrids 2 to 6: Proof of Lem. C.2. We first prove the

indistinguishability of hybrid 2 to Hybrid 6.

Lemma C.2. Hybrid 2 and Hybrid 6 are indistinguishable assuming
the IND-CCA security ofmPKE, sEUF-CMA security of SIG, and the
key-committing property of SKE.

Moreover, we assume the adversary can inject bad randomness
throughout these hybrids, i.e., RandCorr can be set to ‘bad’.

Proof. The proof consists of five parts. We first explain how

the simulator simulates the protocols with the simulator defined

in [36]; second, we explain how to prove the correspondence of

the history graphs maintained by FCGKA,𝑖 and F ctxt
CGKA,𝑖

, which is

the goal of this proof; third, we explain the detailed description of

the simulator; fourth, we prove the correspondence between the

two history graphs; finally, we prove the supporting propositions

to finish the proof of this lemma.

Part 1: Preparation. As explained in the overview, S𝑖 internally

executes the simulator S̃𝑖 presented in the proof by Hashimoto

et al. [36]. To be more precise, S𝑖 outsources the simulation of

Chained CmPKEctxt to S̃𝑖 that simulates Chained CmPKE by ap-

propriately modifying the inputs and outputs of
˜S𝑖 .

To formalize the description of S𝑖 , we make one modification

to S̃𝑖 . Without loss of generality, while S̃𝑖 is internally simulating

Chained CmPKE, we assume it executes and stores the following

two secrets whenever the parties are invoked on a Commit or a

Join:

• G.encSecret← HKDF.Expand(joinerSecret,G.groupCont()∥
‘enc’), and
• welcomeSecret← HKDF.Expand(joinerSecret, ‘wel’).

Here, the inputs to HKDF are states of the parties simulated by

S̃𝑖 . S̃𝑖 then outputs these stored secrets to S𝑖 . S𝑖 uses these se-

crets to either encrypt proposal and commit messages output by

S̃𝑖 or decrypt proposal, commit, and welcome messages sent by

F ctxt
CGKA,𝑖

. Note that these secret keys are never used in the orig-

inal Chained CmPKE — these are encryption keys used only to

secure the static metadata included in proposal, commit, and wel-

come messages of Chained CmPKEctxt. It can be checked that the

proof in [36] still holds even if we consider this slightly modified

simulator S̃𝑖 as above since encSecret and welcomeSecret leak no

information on joinerSecret in the global random oracle model.

We also modify S̃𝑖 so that it outputs commit query (Commit, . . .)
and welcome query (Welcome, . . .) separately like S𝑖 . That is, S̃𝑖
first receives (Commit, id, ®̃p, svk) and simulates the commit c̃0; then
it receives (Welcome, kp𝑡 , Ptr[id], c̃0) and simulates the welcome

message, where kp𝑡 is the receiver’s key package, Ptr[id] is the
committer’s current node, and c̃0 is the new epoch associated with

the welcome message. The above modification in the proof in [36]

is without loss of generality since the information S̃𝑖 receives to
simulate the welcome message corresponds exactly to the informa-

tion required to invoke the simulated party id to output a welcome

message.

Part 2: Goal of Proof.We are now ready to explain the description

of S𝑖 that internally executes S̃𝑖 . Looking ahead, the main goal of

the proof is to relate the history graph created within S̃𝑖 to those

maintained by F ctxt
CGKA,𝑖

. Then, since [36] proved that the history

graph made within S̃𝑖 and those maintained by the ideal function-

ality FCGKA in Hybrid 𝑖 (i.e., FCGKA,𝑖) are identical, we will be able
to indirectly prove that the history graph made within S𝑖 and those
maintained by the ideal functionality F ctxt

CGKA,𝑖
are identical as well.

Indistinguishability between each adjacent hybrid then follows

straightforwardly from the prior proof and the correspondence of

the history graphs maintained by FCGKA,𝑖 and F ctxt
CGKA,𝑖

.

Below, we put tilde on top, e.g., P̃tr[∗], �Node[∗], W̃el[∗], to de-

note the components created by the history graph within S̃𝑖 (which
is also known to S𝑖). As explained above, the history graphs created
within S̃𝑖 and maintained by F ctxt

CGKA,𝑖
are identical so we may use

them interchangeably. We put tilde on proposals p̃ and commits c̃0
to denote that they are non-encrypted variants used by S̃𝑖 .

Using these terminologies, we can restate our goal as to create a

one-to-one correspondence between the nodes
�Node [̃c], �Prop[p̃],

and W̃el[˜̂𝑤] maintained by the history graph in FCGKA,𝑖 and the

nodesNode[node-id],Prop[prop-id], andWel[node-id]maintained

by the history graph in F ctxt
CGKA,𝑖

. We will make the meaning of “one-

to-one correspondence” more clear later, but we informally mean

that the graph topology and the syntactical information stored in

each node are consistent with each other. We assume S𝑖 maintains

lists 𝐿p and 𝐿c that (roughly) assign unique counters to proposal

and commit nodes created within S𝑖 , respectively. This allows us
to relate which node in F ctxt

CGKA,𝑖
relates to FCGKA,𝑖 .

41

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Keitaro Hashimoto, Shuichi Katsumata, and Thomas Prest

Part 3: Description of Simulator S𝑖 . For a detailed motivation and

description of S̃𝑖 , we refer the readers to the original proof by

Hashimoto et al. [36]. We only use their result proving that the

history graphs created within S̃𝑖 and maintained by F ctxt
CGKA,𝑖

are

identical.

Below, we explain how S𝑖 answers each queries made by the

ideal functionality F ctxt
CGKA,𝑖

for 𝑖 ∈ [3 : 6], where we omit the

case 𝑖 = 2 since it is already defined (see the definiton of Hy-

brids 1 and 2). Here, keep in mind that for 𝑖 ∈ [3 : 6] we have

flagcontHide = false, i.e., the leakage functions leak all the static

metadata. Since the description of S̃𝑖 in [36] is identical for each

𝑖 ∈ [3 : 6], we omit the subscript 𝑖 below for simplicity. In other

words, we only need to check that the history graph maintained

by F ctxt
CGKA,3

has a one-to-one correspondence with FCGKA,3. As
a result, the indistinguishability of Hybrids 2 to 6 then inherits

from [36].

(1) Create query from idcreator. This concerns the case when

Z queries (Create, svk) to F ctxt
CGKA

. If F ctxt
CGKA

outputs (Create,
idcreator, svk) to S, S invokes S̃ on the same input. From S̃’s point
of view, S acts identically to the ideal functionality FCGKA. S̃ sim-

ply runs the simulated party idcreator on input (Create, svk).30 S
then samples a random group identifier gid←$ {0, 1}𝜅 and out-

puts it to F ctxt
CGKA

. This creates the node Node[0] within the history

graph maintained by F ctxt
CGKA

. Finally, since S̃ creates a root node�Node[root0], S records 𝐿c [root0] ← 0.

(2) Propose query from id. This concerns the case whenZ queries

(Propose, act) for some act ∈ { ‘upd’-svk, ‘add’-id𝑡 -kp𝑡 , ‘rem’-id𝑡 }
toF ctxt

CGKA
. IfPtr[id] ≠ ⊥, thenF ctxt

CGKA
outputs (Propose, node-id :=

Ptr[id], id, act) to S, and S invokes S̃ on the same input. From S̃’s
point of view, S acts identically to the ideal functionality FCGKA.
S̃ then runs the simulated party id on input (Propose, act). If
RandCorr[id] = ‘bad’ and act = ‘upd’-svk, it asks S to provide

the randomness to run party id. S then queries this request to

its own adversary A to receive the adversarially chosen random-

ness. Here, recall that randomness is only used by S̃ to generate

an update key package kp. If party id, internally simulated by S̃,
returns ⊥, then S̃ returns (ack := false,⊥) to S. S then outputs

(ack := false,⊥,⊥) to F ctxt
CGKA

.
31

Otherwise, if id returns p̃, then S̃ returns (ack := true, p̃).
S then encrypts p̃ as pctxt ← *enc-prop(G.encSecret, p̃) using
G.encSecret of id (provided by S̃, see Part 1). It runs the encryp-
tion on the adversarially controlled randomness if RandCorr[id] =
‘bad’. There are two cases to consider.

Case 1. If �Prop[p̃] = ⊥, i.e., it did not exist in the history graph

maintained by S̃, then S outputs (ack := true,⊥, pctxt).
Case 2. If �Prop[p̃] ≠ ⊥, i.e., it exists in the history graph main-

tained by S̃, then S searches for any pctxt′ such that p̃ ←
*dec-prop(G.encSecret, pctxt′) and prop-id = PropID[pctxt′] ≠
⊥. It then chooses any such pctxt′ and outputs (ack := true, prop-id, pctxt).

30
We note that in the previous definition of FCGKA , the group identifies gid was

omitted. However, this can be amended to FCGKA without loss of generality.

31
Recall that due to our modification in the definition of the key service, S̃ does not

need to output svk𝑡 (see App. B.1.2).

By Proposition C.5, Item 1, which we prove later, such pctxt′

exists and prop-id is unique regardless of the choice of pctxt′.

If act = ‘upd’, S̃ outputs the updated key package kp32. S passes it

to F ctxt
CGKA

.

(3) Commit query from id. This concerns the case when Z
queries (Commit, ®pctxt, svk) to F ctxt

CGKA
. If Ptr[id] ≠ ⊥, then F ctxt

CGKA

outputs (Commit, node-id := Ptr[id], id, ®pctxt, svk) to S. S then de-

crypts the proposals ®̃p := *dec-and-sort-proposals(G.encSecret, ®pctxt)
using G.encSecret of id. If decryption fails, S outputs (ack :=

false,⊥,⊥,⊥). Otherwise,S invokes S̃ on input (Commit, id, ®̃p, svk).
S̃ then runs the simulated party id on input (Commit, ®̃p, svk), where
it asksS to provide the randomness to run party id ifRandCorr[id] =
‘bad’. S then queries this request to its own adversary A to re-

ceive the adversarially chosen randomness. If party id returns

⊥, then S̃ outputs (ack := false,⊥,⊥⊥) to S, and S outputs

(ack := false,⊥,⊥,⊥) to F ctxt
CGKA

.

Otherwise, if party id returns (̃c0, ®̃c,𝑤0, ®̃𝑤), S̃ decides what to

output depending on the following checks (which are identical to

the checks in [36]). We also explain what S does when given the

output of S̃.
Case 1. If �Node [̃c0] = ⊥,𝑤0 ≠ ⊥, and if there exists some rt′ ∈ N

and 𝑤 ′
0
such that W̃el[𝑤 ′

0
] = rootrt′ and 𝑤 ′

0
includes the

same confTag as 𝑤0, then S̃ chooses any such (𝑤 ′
0
, rt′)

(guaranteed to exist uniquely from [36, Proposition E.6])

and returns (ack := true, rt := rt′ ≠ ⊥, c̃0, ®̃c) to S. S
then encrypts the (non-encrypted) commit message as (cctxt

0
,

®cctxt) ← *enc-commit(G.encSecret, c̃0, ®̃c) usingG.encSecret
of id (provided by S̃, see Part 1). By Proposition C.6, Item 3

(which we prove later), there exists a unique node-id such

that Node[node-id] = �Node[rootrt]. That is, the syntactical
information stored on the node, e.g., gid, epoch, prop, orig,
and so on, are identical.S then outputs (ack := true, node-id,
cctxt
0

, ®cctxt) to F ctxt
CGKA

. Afterwards, when S is invoked on

(Welcome, kp𝑡 , node-id := Ptr[id], c̃0) by F ctxt
CGKA

, it invokes

S̃ on the same input. S̃ then returns (ack := true,𝑤0,
˜̂𝑤)

to S, where ˜̂𝑤 is the welcome message for added member

id𝑡 ∈ mem with kp𝑡 . Finally, S encrypts (𝑤0,
˜̂𝑤) as𝑤ctxt

us-

ing G.welcomeSecret of id and returns (ack := true,𝑤ctxt)
to F ctxt

CGKA
.

Case 2. Otherwise, if �Node [̃c0] = ⊥ and either 𝑤0 = ⊥ or there

does not exist 𝑤 ′
0
such that W̃el[𝑤 ′

0
] = rootrt′ for some

rt′ ∈ N and 𝑤 ′
0
includes the same confTag as 𝑤0, then S̃

returns (ack := true, rt := ⊥, c̃0, ®̃c) to S. S then encrypts

the commit as above and returns (ack := true,⊥, cctxt
0

, ®cctxt)
to F ctxt

CGKA
. The welcome message is handled similarly to

Case 1.

Case 3. Finally, if �Node [̃c0] ≠ ⊥, then S̃ returns (ack := true, rt :=
⊥, c̃0, ®̃c) to S. S then searches for any cctxt

0

′
such that c̃0 ←

*dec-commit0 (G.encSecret, cctxt
0

′) and node-id = NodeID[cctxt
0

′] ≠
⊥ (see Proposition C.6 for the definition of *dec-commit0).

32
Recall that due to our modification in the definition of Fctxt

CGKA
, S̃ needs to output

kp if act = ‘upd’. However, this can be amended to S̃ without loss of generality.

42

How to Hide MetaData in MLS-Like Secure Group Messaging:
Simple, Modular, and Post-Quantum CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

It then chooses any such cctxt
0

′
and outputs (ack := true,

node-id, cctxt, ®cctxt). By Proposition C.6, Item 1 (which we

prove later), such cctxt
0

′
exists and node-id is unique regard-

less of the choice of cctxt
0

′
.

If act = ‘upd’, S̃ outputs the committer’s updated key package

kp, and S passes it to F ctxt
CGKA

accordingly.

Finally, when FCGKA queries (Propose, Ptr[id], pctxt) to S dur-

ing the *fill-prop check, it must first decrypt pctxt to obtain the

(non-encrypted) proposal p̃. We use [36, Proposition E.8] that estab-

lishes that any member at the same node P̃tr[id] stores the same

secret keyG.encSecret. Namely,S retrieves the uniqueG.encSecret
assigned to the node P̃tr[id] to decrypt pctxt. If�Prop[p̃] = ⊥, thenS
invokes S̃ on input (Propose, p̃) and receives (orig, act)33. It then
outputs (⊥, orig, act) to F ctxt

CGKA
. Otherwise, if �Prop[p̃] ≠ ⊥, then S

searches for any pctxt′ such that p̃← *dec-prop(G.encSecret, pctxt′)
and prop-id = PropID[pctxt′] ≠ ⊥. It then choses any such pctxt′

and outputs (ack := true, prop-id, pctxt). By Proposition C.5, Item 1,

such pctxt′ exists and prop-id is unique regardless of the choice of

pctxt′. It retrieves (orig, act) ← (�Prop[p̃] .orig,�Prop[p̃] .act) and
returns (prop-id, orig, act) to F ctxt

CGKA
.

(4) Process query from id. This concerns the case whenZ queries

(Process, cctxt
0

, ĉctxt, ®pctxt) to F ctxt
CGKA

. If Ptr[id] ≠ ⊥, then F ctxt
CGKA

outputs (Process, node-id, id, cctxt
0

, ĉctxt, ®pctxt) toS.S then decrypts

the inputmessages as (̃c0,˜̂c) := *dec-commit(G.encSecret, cctxt
0

, ĉctxt)
and ®̃p := *dec-and-sort-proposals(G.encSecret, ®pctxt) as in the

real protocol. If decryption fails, S outputs (ack := false,⊥,⊥,⊥).
Otherwise, S invokes S̃ on input (Process, c̃0,˜̂c, ®̃p). S̃ then (deter-

ministically) runs the simulated party id on input (Process, id, c̃0,˜̂c, ®̃p).
If party id returns ⊥, then S̃ outputs (ack := false,⊥,⊥,⊥) to S.
S then outputs (ack := false,⊥,⊥,⊥) to F ctxt

CGKA
.

Otherwise, if party id returns (id𝑐 , upd∥rem∥add), S̃ decides

what to output depending on the following checks (which are the

checks identical to [36]). We also explain what S does when given

the output of S̃. Note that *fill-prop queries from F ctxt
CGKA

to S
are answered exactly as in commit queries described above.

Case 1. If �Node [̃c0] = ⊥ and if there exists 𝑤0 that includes the

same confTag as c̃0 such that W̃el[𝑤0] = rootrt′ for some

rt′ ∈ N, then S̃ chooses any such (𝑤0, rt′) (guaranteed
to exist uniquely from [36, Proposition E.6]) and returns

(ack := true, rt := rt′,⊥,⊥) to S. By Proposition C.6, Item 3,

there exists a unique node-id such that Node[node-id] =�Node[rootrt]. S then outputs (ack := true, node-id,⊥,⊥)
to F ctxt

CGKA
.

Case 2. If �Node [̃c0] = ⊥ and no such 𝑤0 exists, then S̃ retrieves

the associating long-term public key svk𝑐 of id𝑐 (which is

guaranteed to exist when process succeeds in the real proto-

col) and returns (ack := true,⊥, orig′ := id𝑐 , svk′ := svk𝑐)
to S. S then outputs (ack := true,⊥, orig′, svk′) to F ctxt

CGKA
.

Case 3. Finally, if �Node [̃c0] ≠ ⊥, then S̃ simply returns (ack :=

true,⊥,⊥,⊥) to S. S then searches for any cctxt
0

′
such that

33
Without loss of generality, we assume S̃ returns act ∈
{ ‘upd’-kp, ‘add’-id𝑡 -kp𝑡 , ‘rem’-id𝑡 }

c̃0 ← *dec-commit0 (G.encSecret, cctxt
0

′) and node-id = NodeID[cctxt
0

′] ≠
⊥ (see Proposition C.6 for the definition of *dec-commit0). It
then choses any such cctxt

0

′
and outputs (ack := true,⊥,⊥,⊥).

By Proposition C.6, Item 1, such cctxt
0

′
exists and node-id is

unique regardless of the choice of cctxt
0

′
.

(5) Join query from id. This concerns the case whenZ queries

(Join,𝑤ctxt) toF ctxt
CGKA

. IfPtr[id] = ⊥, thenF ctxt
CGKA

outputs (Join, id,
𝑤ctxt) to S. S then decrypts the input messages as (𝑤0,

˜̂𝑤) :=

*dec-welcome(𝑤ctxt) as in the real protocol. If decryption fails, S
outputs (ack := false,⊥,⊥,⊥,⊥,⊥). Otherwise, S invokes S̃ on

input (Join, id,𝑤0,
˜̂𝑤). S̃ then (deterministically) runs the simu-

lated party id on input (Join,𝑤0,
˜̂𝑤). If party id returns ⊥, then

S̃ outputs (ack := false,⊥,⊥,⊥) to S. S then outputs (ack :=

false,⊥,⊥,⊥,⊥,⊥) to F ctxt
CGKA

.

Otherwise, if party id returns (id𝑐 ,mem), S̃ decides what to

output depending on the following checks (which are the checks

identical to [36]). We also explain what S does when given the

output of S̃.
Case 1. If W̃el[𝑤0] ≠ ⊥, S̃ returns (ack := true,⊥,⊥,⊥) to S. S

then returns (ack := true,⊥,⊥,⊥,⊥,⊥) to F ctxt
CGKA

.

Case 2. Otherwise, S̃ checks if there exists a non-root c̃0 such that�Node [̃c0] ≠ ⊥ and c̃0 includes the same confTag as the one
included in 𝑤0. If such c̃0 exists (guaranteed to be unique

by [36]), then S̃ returns (ack := true, c̃′
0
:= c̃0,⊥,⊥) to S.

S then retrieves G.encSecret stored on the node
�Node [̃c0]

and searches for any cctxt
0

′
such that c̃0 ← *dec-commit0 (

G.encSecret, cctxt
0

′) and node-id = NodeID[cctxt
0

′] ≠ ⊥ (see

Proposition C.6 for the definition of *dec-commit0). It then
choses any such cctxt

0

′
and outputs (ack := true, node-id,⊥,⊥,

⊥,⊥) to F ctxt
CGKA

.

Case 3. Otherwise, if no such c̃0 exists, then S̃ further checks if

there exists𝑤 ′
0
such that W̃el[𝑤 ′

0
] ≠ ⊥ that includes the same

confTag as the one included in𝑤0. If so, S̃ chooses any such

𝑤 ′
0
and returns (ack := true, c̃′

0
:= W̃el[𝑤 ′

0
],⊥,⊥). Here, [36,

Proposition E.6] establishes that the value of W̃el[𝑤 ′
0
] is guar-

anteed to be the same root value, i.e., rootrt for some rt ∈ N,
for all such𝑤 ′

0
. Then, by Proposition C.6, Item 3, there exists

a unique node-id such that Node[node-id] = �Node[rootrt].
S then outputs (ack := true, node-id,⊥,⊥,⊥,⊥) to F ctxt

CGKA
.

Case 4. Finally, if no such c̃0 or 𝑤 ′
0
exist, then S̃ returns (ack :=

true,⊥, orig′ := id𝑐 ,mem′ := mem) to S. This corresponds
to the case W̃el[𝑤0] is initialized by rootrt for a new rt ∈
N, whose value is known to S̃. S then outputs (ack :=

true,⊥, gid′, epoch′, orig′,mem′) toF ctxt
CGKA

, where gid′ and
epoch′ are included in𝑤 ′

0
in the clear.

(6) Key query from id. This concerns the case whenZ queries Key
to F ctxt

CGKA
. If Ptr[id] ≠ ⊥ and Node[Ptr[id]] .key = ⊥, then F ctxt

CGKA

outputs (Key, id) to S. (Recall that safe is always set to false in

this hybrid.) S invokes S̃ on input (Key, id) and receives the group

secret key k. S returns k to F ctxt
CGKA

.

Part 4: Correspondence Between the Two History Graphs.Before prov-
ing the supporting Propositions C.5 and C.6, we prove that the

43

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Keitaro Hashimoto, Shuichi Katsumata, and Thomas Prest

history graph created within S̃ (and hence the ideal functionality

FCGKA) has a “one-to-one” correspondence between the history

graph maintained by F ctxt
CGKA

. To formalize this, we first define what

it means for the two history graphs to be isomorphic.

Definition C.3. LetHG and H̃G be the history graphs maintained

by FCGKA and F ctxt
CGKA

, respectively. We say the two history graphs

are isomorphic if the following holds:
• Let 𝑆𝑝 := { prop-id }prop-id and 𝑆𝑝 := { p }p be the sets of all
proposal nodes in HG and H̃G, respectively. Then, there is a
bijection 𝑓p between these two sets such that Prop[prop-id]
and �Prop[𝑓p (prop-id)] store the same values (modulo the

syntactical difference that .par stores node-id or c0/rootrt).
• Let 𝑆𝑐 := { node-id }node-id and 𝑆𝑐 := { c0 }c0 ∪ { rootrt }rt
be the sets of all commit nodes in HG and H̃G, respectively.
Then, there is a bijection 𝑓c between these two sets such

that Node[node-id] and �Node[𝑓c (node-id)] store the same

values (modulo the syntactical difference that .par stores
node-id or c0/rootrt and .prop stores the encrypted or non-

encrypted proposal).

The following lemma is the key lemma to prove Lem. C.2. Since

isomorphic graphs agree on the same syntactical information, this

also implies that the nodes for which the predicate safe is true are
identical. Notably, all the proofs used to move from Hybrids 2 to 6

in Hashimoto et al. [36] with respect to FCGKA carryovers to those

of F ctxt
CGKA

.

Lemma C.4. The history graphHGmaintained by FCGKA and H̃G
maintained by F ctxt

CGKA are isomorphic.

Proof of Lem. C.4. We prove by induction. When the history

graphs are both empty, then they are isomorphic with the two

bijections 𝑓p and 𝑓c defined to be the zero function. Now, assume

the history graphs HG and H̃G are currently isomorphic, i.e., there

exists bijections 𝑓p and 𝑓c between the propose and commit nodes.

We check that the isomorphism is maintained even after a Propose,
a Commit, a Process, or a Join query is performed.We omit queries

to Create and key as they trivially maintain the isomorphism.

Consistency of isomorphism after Propose. Let us consider
Case 1 in (2), i.e., �Prop[p̃] = ⊥. By Proposition C.5, Item 2, we

have PropID[pctxt] = ⊥. Thus, both FCGKA and F ctxt
CGKA

creates

a new proposal node. By assumption on the induction and how

*create-prop is defined, we have isomorphism even after Propose.
In particular, letting propCtr be the current stored by F ctxt

CGKA
, the

new bijection 𝑓 ′p extends the domain and range of 𝑓p by adding

𝑓 ′p (propCtr) = p̃.

Next, let us consider Case 2 in (2), i.e., �Prop[p̃] ≠ ⊥. In this case

FCGKA andF ctxt
CGKA

performs a consistency check *consistent-prop.
Since no new proposal node is created, we only need to show

that the output of this consistency check is identical for both

ideal functionalities. There are two cases: PropID[pctxt] = ⊥ or

PropID[pctxt] = prop-id′ for some prop-id′ ≠ ⊥. In the former

case, by Proposition C.5, Item 1, S finds pctxt′ ≠ pctxt and out-

puts prop-id = PropID[pctxt′]. F ctxt
CGKA

performs the consistency

check using this prop-id. In the latter case, F ctxt
CGKA

uses the ex-

isting prop-id′ = PropID[pctxt] and ignores prop-id output by S.

By Proposition C.5, Item 1, the values of prop-id and prop-id′ are
identical. We thus only need to focus on prop-id′.

Recall prop-id′ = PropID[pctxt] is created either during Propose
or *fill-prop. Due to the key-committing property of SKE, it
must be created by a node P̃tr[id′] that has the same G.encSecret
as P̃tr[id]. Using [36, Proposition E.8], we must have P̃tr[id′] =
P̃tr[id]. In other words, prop-id′ was created by the node Ptr[id].
Thus, by the assumption on the induction, the consistency check

by FCGKA using p̃ and those by F ctxt
CGKA

using prop-id′ are identical.

Consistency of isomorphism after Commit. Let us consider

Case 1 in (3). This is the case where S assigns a detached root

to cctxt
0

. By Proposition C.6, Item 3, there exists a unique node-id

such that Node[node-id] = �Node[rootrt]. Thus, both FCGKA and

F ctxt
CGKA

perform the same consistency check and the attach proce-

dure. At the end of Commit, the new bijection 𝑓 ′c is identical to 𝑓c
except that 𝑓 ′c (node-id) = c̃0 rather than 𝑓c (node-id) = rootrt .

Next, let us consider Case 2 in (3). This is the case where S
assigns cctxt

0
to a new node. By Proposition C.5, Item 2, we have

PropID[pctxt] = ⊥. Thus, bothFCGKA andF ctxt
CGKA

create a new com-

mit node. By assumption on the induction and how *create-child
is defined, we have isomorphism even after Commit. In particular,

letting nodeCtr be the current stored by F ctxt
CGKA

, the new bijection

𝑓 ′c extends the domain and range of 𝑓c by adding 𝑓 ′c (nodeCtr) = c̃0.
Finally, let us consider Case 3 in (3). In this case FCGKA and

F ctxt
CGKA

performs a consistency check *consistent-com. Since no
new commit node is created, we only need to show that the output

of this consistency check is identical for both ideal functionalities.

Similarly to the argument made in Propose, there are two cases

to consider: NodeID[cctxt
0
] = ⊥ or NodeID[cctxt

0
] = node-id′ for

some node-id′ ≠ ⊥. In the former case, by Proposition C.6, Item 1,

S finds cctxt
0

′
≠ cctxt and outputs node-id = NodeID[cctxt

0

′]. F ctxt
CGKA

performs the consistency check using this node-id. In the latter case,
F ctxt
CGKA

uses the existing node-id′ = NodeID[cctxt
0
] and ignores

node-id output by S. By Proposition C.6, Item 1, the values of

node-id and node-id′ are identical. We thus only need to focus on

node-id′.
Recall node-id′ = NodeID[cctxt

0
] is created either during Commit

or Process. Following an almost exact argument made for PropID
above, we can show node-id′ was created by the node Ptr[id].
Thus, by the assumption on the induction, the consistency check by

FCGKA using c̃ and those by F ctxt
CGKA

using node-id′ are identical.

Consistency of isomorphism after Process. All three cases con-
sidered in Process are covered by the cases considered in Commit.
Namely, S chooses to either attach a detached root to cctxt

0
, create

a new commit node, or attach the commit to an already existing

node.

Isomorphism after Join. First, we show that if W̃el[𝑤0] = ⊥,
then Wel[id,𝑤] = ⊥. Assume Wel[id,𝑤] ≠ ⊥. Since Wel[id,𝑤] is
only created during a Commit, this implies that there exists𝑤 ′

0
≠ 𝑤0

such that W̃el[𝑤 ′
0
] ≠ ⊥. This further implies that 𝑤 decrypts to

two different values𝑤 ′
0
and𝑤0, which contradicts the committing

property of the SKE. Therefore, we have Wel[id,𝑤] = ⊥ when

W̃el[𝑤0] = ⊥.
With this in mind, Cases 1 and 2 in (5) do not alter the propose or

commit nodes of the history graphs maintained by both FCGKA and

44

How to Hide MetaData in MLS-Like Secure Group Messaging:
Simple, Modular, and Post-Quantum CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

F ctxt
CGKA

. These cases correspond to attaching a welcome message to

an existing node on the history graph. Moreover, in Case 3 in (5),
as we already established that Node[node-id] = �Node[rootrt] ≠ ⊥.
Therefor, this also does not alter the history graph.

The final Case 4 in (5) corresponds to the case where a new

detached root is created within FCGKA. By Proposition C.6, Item 2,

F ctxt
CGKA

also creates a new detached root. Since *create-root is

called on the same input, it is clear that the newly created history

graphs remain isomorphic. Namely, the new bijection 𝑓 ′c extends

the domain and range of 𝑓c by adding 𝑓 ′c (nodeCtr) = rt, where rt
and nodeCtr are the counters used to add a new commit node in

FCGKA and F ctxt
CGKA

, respectively. □

Part 5: Proving the Supporting Propositions.To finish the proof of Lem. C.2,

we finally prove Propositions C.5 and C.6. Below, we rely on [36,

Proposition E.8] that establishes that any member at the same node

P̃tr[id] stores the same secret key G.encSecret.

Proposition C.5. We have the following:

(1) If �Prop[p̃] ≠ ⊥, then there exists some pctxt such that p̃ ←
*dec-prop(G.encSecret, pctxt) andPropID[pctxt] ≠ ⊥, where
G.encSecret is the secret key maintained in the node �Prop[p̃].
Moreover, for all such pctxt, the value of PropID[pctxt] is iden-
tical.

(2) If �Prop[p̃] = ⊥, then does not exist any pctxt and encSecret
such that p̃← *dec-prop(encSecret, pctxt) andPropID[pctxt]
≠ ⊥.

Proof. Let us first consider Item 1. �Prop[p̃] is only created dur-

ing a Propose or a *fill-prop. If it was created during a Propose,
then by definition such pctxt exists. If it was created during a

*fill-prop, then S was given pctxt such that p̃ ← *dec-prop(
G.encSecret, pctxt). At the end of *fill-prop, PropID[pctxt] is cre-
ated. Moreover, due to the key-committing property of the SKE,

the proposal node assigned to such proposals pctxt are identical.
Next, let us consider Item 2. Due to the key-committing property

of the SKE, if such a pctxt existed, then we must have �Prop[p̃] ≠ ⊥.
Thus, Item 2 follows by taking the contrapositive. □

Proposition C.6. Let us define the function *dec-commit0 such
that given cctxt

0
and encSecret, it parses (gid, epoch, ‘commit’,CTc0) ←

cctxt
0

, runs c0 ← SKE.Dec(encSecret,CTc0), and outputs c̃0 := (gid,
epoch, ‘commit’, c0).

Then, we have the following:

(1) If �Node [̃c0] ≠ ⊥, then there exists some cctxt
0

such that c̃0 ←
*dec-commit0 (G.encSecret, cctxt

0
) and NodeID[cctxt

0
] ≠ ⊥,

where G.encSecret is the secret key maintained in the node�Node [̃c0]. Moreover, for all such cctxt, the value ofNodeID[cctxt
0
]

is identical.
(2) If �Node [̃c0] = ⊥, then there does not exist any cctxt

0
and

encSecret such that c̃0 ← *dec-commit0 (encSecret, cctxt
0
)

and NodeID[cctxt
0
] ≠ ⊥.

(3) If �Node [̃c0] = ⊥ and there exists 𝑤0 that includes the same
confTag as c̃0 such that W̃el[𝑤0] = rootrt for some rt ∈ N,
then there exists a unique node-id such thatNode[node-id] =�Node[rootrt]. That is, the syntactical information stored on
the node, e.g., gid, epoch, prop, orig, and so on, are identical.

Proof. Let us first consider Item 1.
�Node [̃c] is only created

during a Commit or a Process. More concretely,
�Node [̃c0] is only

created if S̃ assigns a detached root to c̃0 or a new commit node

during a Commit or a Process. In either cases, a corresponding

cctxt
0

is output by S and NodeID[cctxt
0
] is generated within F ctxt

CGKA
.

Moreover, due to the key-committing property of the SKE, the

commit node assigned to such commits cctxt
0

are identical.

Next, let us consider Item 2. Due to the key-committing property

of the SKE, if such a cctxt existed, then we must have
�Node [̃c0] ≠ ⊥.

Thus, Item 2 follows by taking the contrapositive.

Finally, let us consider Item 3. Such 𝑤0 is generated when S̃
creates a new root detached root during a Join (corresponding to
Case 4 in (5)). Since S creates a new commit node with the same

syntactical information that S̃ used, Item 3 follows. □

This concludes the proof of Lem. C.2. □

C.3.4 From Hybrid 6 to 7: Proof of Lem. C.7. In this section, we

prove the indistinguishability of remaining hybrid 6 and hybrid

7. As explained in the overview, we assume the adversary cannot
inject bad randomness throughout these hybrids, i.e., RandCorr is
always ‘good’.

Also, we slightly modify the description of S6. We assume S6
executes the code of S̃6 by itself instead of invoking S̃6.

To prove Lem. C.7, we first formally define the behavior of simu-

lator S7 in Hybrid 7; then we analyze the simulation provided by

S7 provides an indistinguishable view toZ as in Hybrid 6.

Part 1: Description of the Simulator S7.We first explain the descrip-

tion ofS7. For simulation,S7 stores group encryption key encSecret
for epoch node-id in the list 𝐿encSecret.

S7 simulates group states G (which includes e.g., membership

list and group secret keys) of node-id depending on the status of

the parent epoch of node-id denoted by node-id𝑝 .

Case (1). If safe(node-id𝑝) = false when node-id is created, S7
knows the group state of node-id𝑝 . Thus, S7 generates the group
state of node-id from it following the protocol as in S6.
Case (2). If safe(node-id𝑝) = true when node-id is created, S7
defers the generation of group state of node-id to the following

timing. Note that due to the restricted environment, these are the

only subcase of Case (2), and only one of the following cases occurs

for each node-id.

Case (2-1) safe(node-id) = true when proposal/commit mes-
sages are generated/processed at node-id:S7 setsG.gid←
Node[node-id] .gid andG.epoch← Node[node-id] .epoch+
1. Also, it chooses a random encSecret and stores𝐿encSecret [node-id] ←
encSecret. In this case, it does not generate the other group

state.

Case (2-2) Party id at node-id is corrupted (i.e., safe(node-id)
becomes false) before proposal/commit messages are
generated/processed at node-id: When A corrupts id at

node-id,S7 receives the following information from the func-

tionality.

• id’s current mPKE secret key dk (stored in CurrDK array)

• id’s current signature signing key ssk (stored in SSK array)

• The epoch pointer node-id = Ptr[id] (i.e., id’s current
node in the history graph)

45

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Keitaro Hashimoto, Shuichi Katsumata, and Thomas Prest

• The information stored in Node[node-id]
Using this information, S7 simulates the group states. It first

initializes the group state G as follows:

• G.gid← Node[node-id] .gid
• G.epoch← Node[node-id] .epoch
• G.member← Node[node-id] .mem
• G.joinerSecret←$ {0, 1}𝜅
• G.confTransHash-w.o-‘idc’←$ {0, 1}𝜅
• G.confTransHash← H(G.confTransHash-w.o-‘idc’, id𝑐),
where id𝑐 := Node[node-id] .orig
• G.certSvks[∗],G.pendUpd[∗],G.pendCom[∗] ← ∅
• G.id← id
• G.ssk← ssk
• G.member[id] .dk← dk
Then, S7 executes the following functions in order to gener-

ate group secrets and hash values.

(1) G.memberHash← *derive-member-hash(G)
(2) (G, confKey) ← *derive-epoch-keys(G,G.joinerSecret)
(3) confTag← *gen-conf-tag(G, confKey)
(4) G ← *set-interim-trans-hash(G, confTag)
Since the previous epoch is secure and due to the restricted

environment, A cannot corrupt the past secure epochs (cf.

lines 9-10 in Fig. 14). Thus, A cannot distinguish the sim-

ulated group state from a real one since A cannot check

whether the simulated group states are consistent for the

previous epoch. Finally, S7 stores 𝐿encSecret [node-id] ←
G.encSecret.

S7 answers each query made by the ideal functionality F ctxt
CGKA,7

as in S6 except for the differences shown below. We only describe

S7 when safe is true for the epoch Z queries. This is because if

safe is false, S7 knows the corresponding group state (see above)

and obtains the same information S6 receives from F ctxt
CGKA,7

; thus

S7 can simulate the protocol messages as S6 does.
Simulation on input (Create). S7 chooses gid at random and

returns it to the functionality. Note that S7 does not generate other
group information in this timing (see above for when and how

group state is generated). h(1 − 𝛿)-correct Simulation on input

(Propose, node-id, |id| , |act|). Let encSecret := 𝐿encSecret [node-id].
S7 computes CTp ← SKE.Enc(encSecret, 0ℓp) and sets pctxt := (
gid, epoch, ‘proposal’,CTp), where gid and epoch is the group iden-

tity and the current epoch number of node-id.34 It returns (ack :=

true, prop-id := ⊥, pctxt) to the functionality Note that ℓp , the

length of p, can be computed from the received information and

public parameters (which determine the length of the hash value,

mPKE ciphertext, signature, etc.).

Simulation on input (Commit, node-id, |id| , ®pctxt, |svk| , |mem|).
For each pctxt ∈ ®pctxt, S7 checks whether it satisfies the following
conditions.

• PropID[pctxt] ≠ node-id, i.e., the received proposal was is-

sued at a different epoch. We call the event Erej-1.
• PropID[pctxt] = ⊥, i.e., the received proposal was generated

by the adversary. We call the event Erej-2.

34
The simulator always knows gid and epoch for each node-id.

If one of the above condition holds for some pctxt ∈ ®pctxt,S7 outputs
ack := false.

Otherwise
35
, S7 generates CTc0 ← SKE.Enc(encSecret, 0ℓc0)

and ĉctxt
𝑖
← SKE.Enc(encSecret, 0ℓ̂c) for encSecret := 𝐿encSecret [node-id]

and each 𝑖 ∈ [|mem|]. Then, it sets cctxt
0

:= (gid, epoch, ‘commit’,
CTc0) and ®c

ctxt
:= { ĉctxt

𝑖
}
𝑖∈[|mem |] , and returns (ack := true, node-id :=

⊥, cctxt
0

, ®cctxt) to the functionality, where gid and epoch is the group

information of the epoch node-id. S7 stores 𝐿cctxt [node-id] ← ®cctxt.
Note that both the length of c0 and ĉ (ℓc0 and ℓ̂c) can be computed

from the received information and public parameters.

Simulation on input (Welcome, kp𝑡 , |gid| , |epoch| , |id| , |mem|).
S7 receives this message if safe is true for the next epoch, where
new members will join. Let ek𝑡 be themPKE encryption key in kp𝑡 .
S7 computes the following:

• ct← mEnc(ek𝑡 , 0)
• welcomeSecretid𝑡 ←$ {0, 1}𝜅
• CT← SKE.Enc(welcomeSecretid𝑡 , 0

ℓ(groupInfo,sig)).
Note that ℓ(groupInfo,sig) can be computed from the received leak-

age information and public system parameters. S7 sets 𝑤ctxt
:=

(id𝑡 , (H(kp𝑡), ct),CT) and returns (ack := true,𝑤ctxt) to the func-

tionality. S7 also stores 𝐿𝑤ctxt +← (id𝑡 ,H(kp𝑡), ct,CT).
Simulation on input (Process, node-id, index, cctxt

0
, ĉctxt, ®pctxt).

S7 first checks the following conditions and outputs ack := false
if one of the conditions holds.

• PropID[pctxt] = node-id′,NodeID[cctxt
0
] = node-id′ or ĉctxt ∈

Node[node-id′] .vcom such that node-id′ ≠ node-id, i.e., the
received proposal/commit message was generated at a dif-

ferent epoch. We call the event Erej-1.
• PropID[pctxt] = ⊥,NodeID[cctxt

0
] = ⊥ or ĉctxt ∉ Node[node-id′] .vcom

for all node-id′, i.e., the received proposal/commit was gen-

erated by the adversary. We call the event Erej-2.

Otherwise
36
, S7 returns (ack := true,⊥,⊥,⊥).

Simulation on input (Join, id,𝑤ctxt). Let (id𝑡 , kphash𝑡 , ct𝑡 ,CT𝑡) :=
𝑤ctxt

. (In the following, we assume id𝑡 = id and id succeeds to fetch

kp𝑡 such that kphash𝑡 = h(kp𝑡); otherwise both S6 and S7 return
ack := false.) If 𝑤ctxt

is generated by an honest committer (i.e.,

*succeed-wel returns true),S7 returns (ack := true,⊥,⊥,⊥,⊥,⊥).
Else, S7 processes the welcome message as in S6 (i.e., following
protocol description).

Part 2: Indistinguishability of Two Hybrids. We then prove the fol-

lowing lemma.

Lemma C.7. Hybrid 6 and Hybrid 7 are indistinguishable assuming
the INDCCA security of mPKE and the IND-CCA security of SKE.

Proof. To show Lem. C.7, we consider the following sub-hybrids

between Hybrid 6 and Hybrid 7.

Hybrid 6-0 := Hybrid 6. This is identical to Hybrid 6. We use the

functionality F ctxt
CGKA,6

, and the simulator S6-0 := S6.

35
This implies ®pctxt only contains proposals such that PropID[pctxt] = node-id and

thus *succeed-com returns true.

36
This implies (cctxt

0
, ĉctxt, ®pctxt) is honestly issued at node-id and thus

*succeed-proc returns true

46

How to Hide MetaData in MLS-Like Secure Group Messaging:
Simple, Modular, and Post-Quantum CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

Hybrid 6-1 In this hybrid, the simulator S6-1 is defined exactly

as S6-0 except that it always outputs ack := false to the

functionality when the event Erej-1 occurs.
Hybrid 6-2 In this hybrid, the simulator S6-2 is defined exactly as

S6-1 except that it replaces encSecret and welcomeSecretid𝑡
with a random value if safe is true.

Hybrid 6-3. In this hybrid, the simulator S6-3 is defined exactly

as S6-2 except that it always outputs ack := false when the

event Erej-2 occurs.
Hybrid 6-4. In this hybrid, the simulator S6-4 is defined exactly as

S6-3 except that it replaces a mPKE ciphertext in welcome

messages with a ciphertext of 0 if safe is true for the next
epoch where new members join with the welcome messages.

Hybrid 6-5. In this hybrid, the simulator S6-5 is defined exactly

as S6-4 except that it replaces SKE ciphertexts in welcome

messages with encryption of zero-string if safe is true for the
epoch where new members join with the welcome messages.

Hybrid 6-6. In this hybrid, the simulator S6-6 is defined exactly

as S6-5 except that it replaces SKE ciphertexts in proposal

and commit messages with encryption of zero-string if safe
is true for the epoch where these messages are issued. Note

that S6-6 is identical to S7.
Hybrid 6-7 = Hybrid 7. We replace the functionalityF ctxt

CGKA,6
with

the functionality F ctxt
CGKA,7

. The simulator S7 is defined by

the above description. Since S7 has simulated the protocol

with the information given from F ctxt
CGKA,7

, Hybrid 6-6 and

Hybrid 6-7 are identical.

From Lems. C.8 to C.11, C.13 and C.15 provided below, Hybrid

6-0 and Hybrid 6-6 are indistinguishable. Therefore, we conclude

that Hybrid 6 and Hybrid 7 are indistinguishable. □

C.3.5 From Hybrid 6-0 to 6-1: Proof of Lem. C.8.

Lemma C.8. Hybrid 6-0 and Hybrid 6-1 are indistinguishable as-
suming the key-committing property of SKE.

Proof. The difference between S6-0 and S6-1 is S6-1 always

outputs ack := false when the event Erej-1 occurs. In other words,

if S6-0 outputs ack := true when Erej-1 occurs,Z can distinguish

the two hybrids. We show that, ifZ can distinguish the two hybrids,

then there exists an adversary B that breaks the key-committing

property of SKE.
B simulates forZ the interaction with F IW

AS
and F IW

KS
, and the

protocol execution of each party as in S6-0. Assume Erej-1 occurs
for some SKE ciphertext CT and Z distinguish the two hybrids

when CT is processed. By the condition of Erej-1, there exists the
encryption key 𝑘 (encSecret or welcomeSecretid𝑡) used to generate
CT and the other encryption key 𝑘′ ≠ 𝑘 that correctly decrypts CT.
This meansCT can be correctly decrypted with both𝑘 and𝑘′, which
implies B can break the key-committing property of SKE. This
contradicts the assumption that SKE has key-committing property.

Therefore, both S6-0 and S6-1 always outputs ack := false when
Erej-1 occurs. □

C.3.6 From Hybrid 6-1 to 6-2: Proof of Lem. C.9.

Lemma C.9. Hybrid 6-1 and Hybrid 6-2 are indistinguishable as-
suming mPKE is Chained CmPKE conforming GSD secure.

Proof. The proof is identical to the proof in [37, Lemma E.29].

To prove the indistinguishability of the two hybrids, we grad-

ually replace each encSecret and welcomeSecretid𝑡 with a ran-

dom value if safe is true when a propose/commit/welcome mes-

sage is created. Similar to the proof of randomness of appSecret
provided in [37, Lemma E.29], we can show that, if Z can dis-

tinguish whether encSecret or welcomeSecretid are real or ran-

dom, it can be used to break the Chained CmPKE conforming

GSD security of mPKE. Note that the value of safe is fixed when

a propose/commit/welcome message is created at the epoch (cf.

*mark-content-hiden-epoch), and the adversary is restricted from
colluding to change this value (cf. line 11 in Fig. 14). Thus, we can

construct a reduction B as in [37, Lemma E.29]. Therefore, ifmPKE
isChained CmPKE conforming GSD secure, Hybrid 6-1 and Hybrid

6-2 are indistinguishable. □

C.3.7 From Hybrid 6-2 to 6-3: Proof of Lem. C.10.

Lemma C.10. Hybrid 6-2 and Hybrid 6-3 are indistinguishable
assuming SKE is the IND-CCA secure.

Proof. The difference between S6-2 and S6-3 is S6-3 always out-
puts ack := false when the event Erej-2 occurs37. In other words,

Z distinguishes the two hybrids if the adversary produces mali-

cious ciphertexts that can be decrypted correctly. Such a malicious

ciphertext may contain (1) a malicious plain message (i.e., the mes-

sage generated by the adversary) or (2) an honest plain message

(i.e., the message generated by an honest party at the same epoch).

For the former case, we already proved that the adversary cannot

produce acceptable messages without knowingMAC key (cf. Hy-

brid 5). Thus, the previous simulator also outputs ack := false in
the former case. Therefore, we care about the latter case. We show

that, ifZ can distinguish the two hybrids when the adversary pro-

duces a malicious ciphertext that contains an honestly generated

plain message, then we can construct an adversary B that breaks

the IND-CCA security of SKE.
B simulates forZ the interaction with F IW

AS
and F IW

KS
, and the

protocol execution of each party as in S6-2 except for encrypting
messages. At the beginning of the game, B chooses 𝑖 ∈ [𝑄] at
random (where𝑄 is the total number of honestly generated epochs)

and hopes thatZ distinguishes the hybrids when the event occurs

in the 𝑖-th honest epoch. That is, we assume that, when a party pro-

cesses some ciphertextCTwith the 𝑖-th honest encryption key,S6-2
outputs ack := true, but S6-3 outputs ack := false. (B succeeds

to guess such an epoch with probability 1/𝑄 .) B embed the chal-

lenge SKE key of the IND-CCA game to the 𝑖-th encSecret. Note
that if safe is true for the corresponding epoch, the encryption

key is chosen at random due to the modification we made in Hy-

brid 6-2; thus the challenge key can be embedded. In addition, the

adversary cannot corrupt the challenge key after the key is used

for encryption since the adversary’s corruption is restricted (cf.

*mark-content-hiden-epoch function). When B encrypts mes-

sages with the 𝑖-th encSecret (i.e., the challenge key), it uses the
encryption oracle LR by setting M0 as the actual message and M1

as a random message with the same length. B uses its decryption

37
The event Erej-2 only occurs in epochs where safe is true.

47

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Keitaro Hashimoto, Shuichi Katsumata, and Thomas Prest

oracle when it wants to decrypt a ciphertext
38
. If the decryption

result is identical to the message M𝑏 , B outputs the bit 𝑏 to the

challenger of the IND-CCA game. Else, the decryption result is dif-

ferent from the messages sent to the encryption oracle, it outputs

ack := false. Note that for other keys, B simulates protocol as in

the previous hybrid.

We can verify that B wins the IND-CCA game if the adversary

can produce a ciphertext that contains an honestly generated mes-

sage. Note that the messagesM
1−𝑏 are information-theoretically

hidden from the adversary (and Z). Hence, if Z can distinguish

the two hybrids, B can break the IND-CCA security of SKE. This
contradicts the assumption that SKE is the IND-CCA secure. There-

fore,Z cannot distinguish the two hybrids. In other words, both

S6-2 and S6-3 outputs ack = false when Erej-2 occurs. □

C.3.8 From Hybrid 6-3 to 6-4: Proof of Lem. C.11.

Lemma C.11. Hybrid 6-3 and Hybrid 6-4 are indistinguishable
assuming mPKE is IND-CCA secure.

Proof. We assume Z creates at most W welcome messages

by Commit query. To show Lem. C.11, we consider the following

sub-hybrids between Hybrid 6-3 and Hybrid 6-4.

Hybrid 6-3-0 := Hybrid 6-3. This is identical to Hybrid 6-3. The

simulator S6-3-0 = S6-3 generates protocol messages follow-

ing the protocol procedures.

Hybrid 6-3-𝑖. 𝑖 runs through [W]. The simulator S6-3-𝑖 is defined
exactly as S

6-3-(𝑖−1) except that, when it simulates the 𝑖-

th welcome message, if the safe predicates is true for the

next epoch the welcome message is associated with, it en-

crypts zero-strings instead of the joiner secret with the new

member’s mPKE encryption key. Note that we count wel-

come messages in the order the simulator creates. We show

in Lem. C.12 that Hybrid 6-3-(𝑖 − 1) and Hybrid 6-3-𝑖 are

indistinguishable.

Hybrid 6-4. This is identical to Hybrid 6-3-W . In this hybrid,

mPKE ciphertexts in welcome messages issued for secure

epochs (i.e., safe is true) are replaced with the encryption of

zero-string.

The indistinguishability between Hybrid 6-3-0 and Hybrid 6-3-𝑄

is derived by applying Lem. C.12 for all 𝑖 ∈ [W]. Therefore, we
conclude that Hybrid 6-3 and Hybrid 6-3 are indistinguishable. □

C.3.9 Proof of Lem. C.12: From Hybrid 6-3-(𝑖 − 1) to 6-3-𝑖 .

Lemma C.12. Hybrid 6-3-(𝑖 − 1) and Hybrid 6-3-𝑖 are indistin-
guishable assuming mPKE is IND-CCA secure39.

Proof. The difference between S
6-3-(𝑖−1) and S6-3-𝑖 is, when

generating the 𝑖-th welcomemessage, if the next epoch is secure (i.e.,

safe is true for the next epoch),S6-3-𝑖 replaces themPKE ciphertext

in the 𝑖-th welcome message with a ciphertext of 0 encrypted with

the newmember’smPKE encryption key (the simulator receives the

new member’s key package from the functionality). We show that,

ifZ can distinguish the two hybrids, then there exists an adversary

38
By definition of the simulator, B only sends ciphertexts that are not produced by

the encryption oracle.

39
We use the IND-CCA game with 𝑁 = 1 (cf. Fig. 8).

B that breaks IND-CCA security of mPKE. We first explain the

description of B and then evaluate B’s advantage.
B simulates forZ the interaction with F IW

AS
and F IW

KS
, and the

protocol execution as in S
6-3-(𝑖−1) except for generating the 𝑖-th

welcome message. Let ek∗ be the challenge mPKE encryption key

provided by the IND-CCA game. Observer that honest key packages

are generated on register-kp queries toF IW

KS
.We assumeZ issues

at most 𝑄 register-kp queries. At the beginning of the game, B
chooses an index 𝐽 ∈ [𝑄] at random, embeds the challenge key in

the 𝐽 -th register-kp query, and hopes that the 𝐽 -th key package

will be used to add the 𝑖-th welcome message. (B succeeds to guess

with probability 1/𝑄 .) For other register-kp queries, B generates

key packages following the description of F IW

KS
. If B decrypts a

ciphertext with the challenge decryption key,B uses the decryption

oracle provided by the IND-CCA game.

Assume the 𝑖-th welcome message is created with the 𝐽 -th key

package and safe is true for the new epoch where the 𝑖-th welcome

message is created. Let joinerSecret be the corresponding joiner

secret. B outputs M0 := joinerSecret and M1 := 0 to IND-CCA
game challenger and receives the challenge ciphertext (ct∗

0
, ĉt∗).

B uses it as the mPKE ciphertext in the 𝑖-th welcome message.

Note that, since safe is true, the adversary has not corrupted the

challenge key, and it is restricted from colluding to compute the

challenge key (cf. *mark-content-hiden-epoch function). Thus,

B never corrupts the challenge key.

We finally analyze B’s advantage. If the challenger returns the
ciphertext of the joiner secret,Z’s view is identical to Hybrid 6-3-

(𝑖−1); else, i.e., the challenger returns the ciphertext of 0,Z’s view is

identical to Hybrid 6-3-𝑖 . Hence, ifZ distinguishes Hybrid 6-3-(𝑖−1)
and Hybrid Hybrid 6-3-𝑖 with non-negligible probability, B wins

the IND-CCA game with non-negligible probability by usingZ’s

output. This contradicts the assumption that mPKE is IND-CCA
secure. Therefore, Hybrid 6-3-(𝑖 − 1) and Hybrid Hybrid 6-3-𝑖 are

indistinguishable. □

C.3.10 From Hybrid 6-4 to 6-5: Proof of Lem. C.13.

Lemma C.13. Hybrid 6-4 and Hybrid 6-5 are indistinguishable
assuming SKE is the IND-CCA secure.

Proof. We assume Z creates at most W welcome messages

by Commit query. To show Lem. C.13, we consider the following

sub-hybrids between Hybrid 6-4 and Hybrid 6-5.

Hybrid 6-4-0 := Hybrid 6-4. This is identical to Hybrid 6-4. The

simulator S6-4-0 = S6-4 generates protocol messages follow-

ing the protocol procedures.

Hybrid 6-4-𝑖. 𝑖 runs through [W]. The simulator S6-4-𝑖 is defined
exactly as S

6-4-(𝑖−1) except that, when it simulates the 𝑖-th

welcome message, if safe is true for the next epoch the wel-

come message is associated with, it generates a ciphertext as

CT ← SKE.Enc(welcomeSecretid𝑡 , 0
ℓ(groupInfo,sig)). Note that

we count welcome messages in the order the simulator cre-

ates.We show in Lem. C.14 that Hybrid 6-4-(𝑖−1) andHybrid
6-4-𝑖 are indistinguishable.

Hybrid 6-3. This is identical to Hybrid 6-2-W . In this hybrid, SKE
ciphertext in welcome messages issued for secure epochs

(i.e., safe is true) is replaced with a random string.

48

How to Hide MetaData in MLS-Like Secure Group Messaging:
Simple, Modular, and Post-Quantum CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

The indistinguishability between Hybrid 6-4-0 and Hybrid 6-4-𝑄

is derived by applying Lem. C.14 for all 𝑖 ∈ [W]. Therefore, we
conclude that Hybrid 6-4 and Hybrid 6-3 are indistinguishable. □

C.3.11 Proof of Lem. C.14: From Hybrid 6-4-(𝑖 − 1) to 6-4-𝑖 .

Lemma C.14. Hybrid 6-4-(𝑖 − 1) and Hybrid 6-4-𝑖 are indistin-
guishable assuming SKE is the IND-CCA secure.

Proof. The difference between S
6-4-(𝑖−1) and S6-4-𝑖 is, when

generating the 𝑖-th welcomemessage, if the next epoch is secure (i.e.,

safe is true for the next epoch), S6-4-𝑖 replaces the SKE ciphertext

in the 𝑖-th welcome message with an encryption of zero-string. We

show that, ifZ can distinguish the two hybrids, then there exists

an adversary B that breaks the IND-CCA security of SKE. We first

explain the description of B and then evaluate B’s advantage.
B simulates for Z the interaction with F IW

AS
and F IW

KS
, and

the protocol execution as in S
6-4-(𝑖−1) except for generation of

SKE ciphertext in the 𝑖-th welcome message if safe is true for the
new epoch corresponding to the 𝑖-th welcome message. B embed

the challenge SKE key of the IND-CCA game to welcomeSecretid𝑡 ,
which is used to encrypt the 𝑖-th welcomemessage. If safe is true for
the corresponding epoch, welcomeSecret is chosen at random due

to the modification we made in Hybrid 6-1; thus the challenge key

can be embedded. In addition, the adversary cannot corrupt the chal-

lenge key after messages are encrypted with the key since the adver-

sary’s corruption is restricted (cf. *mark-content-hiden-epoch
function).

When B encrypts the contents M in the 𝑖-th welcome message,

it queries CT := LR(M0 := (groupInfo, sig),M1 := 0
ℓ(groupInfo,sig))

and uses the challenge ciphertext CT as the ciphertext in the 𝑖-th

welcome message. When B decrypts ciphertexts different from

challenge ciphertexts with the challenge key, it uses its decryption

oracle.

We finally analyze B’s advantage. If the oracle LR returns a

ciphertext of the real contentsM0,Z’s view is identical to Hybrid 6-

4-(𝑖 − 1); else, i.e., the oracle LR returns a ciphertext of zero-string,

Z’s view is identical to Hybrid 6-4-𝑖 . Hence, ifZ distinguishes Hy-

brid 6-4-(𝑖 − 1) and Hybrid Hybrid 6-4-𝑖 with non-negligible proba-

bility, B breaks the IND-CCA security of SKE with non-negligible

probability by usingZ’s output. This contradicts the assumption

that SKE is IND-CCA secure. Therefore, Hybrid 6-4-(𝑖 − 1) and
Hybrid Hybrid 6-4-𝑖 are indistinguishable. □

C.3.12 From Hybrid 6-5 to 6-6: Proof of Lem. C.15.

Lemma C.15. Hybrid 6-5 and Hybrid 6-6 are indistinguishable
assuming SKE is IND-CCA secure.

Proof. We assume Z creates at most Q epochs (i.e., commit

nodes). To show Lem. C.15, we consider the following sub-hybrids

between Hybrid 6-5 and Hybrid 6-6.

Hybrid 6-5-0 := Hybrid 6-5. This is identical to Hybrid 6-5. We

use the functionality F ctxt
CGKA,6

, and the simulator S6-5 =

S6-5-0.
Hybrid 6-5-𝑖. 𝑖 runs through [Q]. The simulator S6-5-𝑖 is defined

exactly as S
6-5-(𝑖−1) except that, when a party issues pro-

posal or commit messages at the 𝑖-th epoch, if safe is true
for the epoch, it encrypts a zero-string instead of the real

contents in the non-encrypted proposal/commit message.

Note that we count epochs in the order in which Propose
or Commit is called. We show in Lem. C.16 that Hybrid 6-5-

(𝑖 − 1) and Hybrid 6-5-𝑖 are indistinguishable.

Hybrid 6-6. This is identical to Hybrid 6-5-Q. In this hybrid, ci-

phertexts in proposal and commit messages issued at secure

epochs (epochs such that safe is true) are replaced with

random bit-strings.

The indistinguishability between Hybrid 6-5-0 and Hybrid 6-5-𝑄

is derived by applying Lem. C.16 for all 𝑖 ∈ [Q]. Therefore, we
conclude that Hybrid 6-5 and Hybrid 6-6 are indistinguishable. □

C.3.13 Proof of Lem. C.16: From Hybrid 6-5-(𝑖 − 1) to 6-5-𝑖 .

Lemma C.16. Hybrid 6-5-(𝑖 − 1) and Hybrid 6-5-𝑖 are indistin-
guishable assuming SKE is IND-CCA secure.

Proof. The difference between S
6-5-(𝑖−1) and S6-5-𝑖 is, when

generating proposal or commit messages at the 𝑖-th epoch such

that safe is true, S6-5-𝑖 encrypts a zero-string instead of the real

contents. We show that, ifZ can distinguish the two hybrids, then

there exists an adversary B that breaks the IND-CCA security of

SKE. We first explain the description of B. Then we evaluate B’s
advantage.

B simulates forZ the interaction with F IW

AS
and F IW

KS
, and the

protocol execution of each party as in S
6-5-(𝑖−1) except for encryp-

tion of proposal and commit messages generated at the 𝑖-th epoch

if safe is true. B embed the challenge SKE key of the IND-CCA
game to encSecret of the 𝑖-th epoch (if safe is true for the 𝑖-th

epoch, encSecret is chosen at random due to the modification we

made in Hybrid 6-2; thus the challenge key can be embedded). In

addition, the adversary cannot corrupt the challenge key after mes-

sages are encrypted with the key since the adversary’s corruption

is restricted (cf. *mark-content-hiden-epoch function). When B
encrypts contentsM in a proposal or commit message at the 𝑖-th

epoch, it queriesCT := LR(M0 := M,M1 := 0
|M |). Note that due to

the modification we made in Hybrid 6-3, B can reject any messages

which do not generate with the 𝑖-th encryption key or generated by

the adversary. Thus it does not need to use the decryption oracle.

We finally analyze B’s advantage. If the encryption oracle LR
returns ciphertexts ofM,Z’s view is identical to Hybrid 6-5-(𝑖 − 1);
else, i.e., the LR oracle returns ciphertexts of zero-string,Z’s view

is identical to Hybrid 6-5-𝑖 . In addition, the 𝑖-th encryption secret

is hidden from the adversary. Hence, ifZ distinguishes Hybrid 6-5-

(𝑖 − 1) and Hybrid Hybrid 6-5-𝑖 with non-negligible probability, B
wins the IND-CCA game with non-negligible probability by using

Z’s output. This contradicts the assumption that SKE is IND-CCA
secure. Therefore, Hybrid 6-5-(𝑖 − 1) and Hybrid Hybrid 6-5-𝑖 are

indistinguishable. □

D METADATA-HIDING CGKA: DEFINITION
In this section, we propose a UC security model capturing the

security of the 1st, 2nd, and 3rd layers (i.e., group secret keys, static

and dynamicmetadata) by defining a new ideal functionalityFmh
CGKA

.

49

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Keitaro Hashimoto, Shuichi Katsumata, and Thomas Prest

D.1 An Overview of Fmh
CGKA

The ideal functionality Fmh
CGKA

is formally defined in Figs. 36 to 38,

40 and 41, along with the helper functions in Fig. 39 to aid the

readability. As it can be checked, Fmh
CGKA

shares a large portion of its

code with F ctxt
CGKA

. This is because Fmh
CGKA

by definition also models

an ideal functionality of a CGKA securing the 1st & 2nd layers. For

better readability, we outsourced the description of Fmh
CGKA

that is

non-essential to the dynamic metadata to F ctxt
CGKA

. This should not

be misunderstood as Fmh
CGKA

making oracle calls to F ctxt
CGKA

— the

former simply reuses the codes of F ctxt
CGKA

.

While Fmh
CGKA

allows the adversary to corrupt the parties (and

the server) as in F ctxt
CGKA

, we do not model adversarial controlled

randomness (i.e., RandCorr is always set to ‘good’). As the first

work to formally capture the dynamic metadata layer, we opted

for simplicity and better readability. We leave it as future work to

allow such types of attacks. We now explain the ideal functionality

Fmh
CGKA

in more detail.

States. Similarly to F ctxt
CGKA

, Fmh
CGKA

maintains a history graph. As a

custom, we assume one honest group is created by the designated

party idcreator. Such group is assigned to the main root node-id = 0.

Since Fmh
CGKA

does not allow the adversary to manipulate the party’s

randomness, RandCorr[id] cannot be switched to ‘bad’.
Other than the history graph,Fmh

CGKA
alsomaintains three databases:

PropDB[∗, ∗],ComDB[∗, ∗], andWelDB[∗]. The proposal database
PropDB[gid, epoch] stores proposals issued at (gid, epoch). The
welcome database WelDB[id] stores a welcome message sent to id.
Since Fmh

CGKA
processes a join query only when Ptr[id] = ⊥ (i.e.,

a party id is not assigned to any group), WelDB[id] stores only
one welcome message for each id, and overwrites the old one if

a new welcome message is published to id. Finally, the commit

database ComDB[gid, epoch] stores the status of the group gid at

epoch. Depending on the status of the group, it takes one of the

following five values:

• ComDB[gid, epoch] = ⊥: It indicates that the epoch has not

been initialized yet.

• ComDB[gid, epoch] = (⊤, node-id): It indicates that the

epochhas been initialized by an honest party located at the

commit node node-id (of the history graph), and no commit

has been issued at epoch.
• ComDB[gid, epoch] = ((c0, ®c), node-id): It indicates that the
epoch has been initialized by an honest party located at the

commit node node-id, and a commit (c0, ®c) has been issued

at epoch.
• ComDB[gid, epoch] = (⊤, ‘adv’): It indicates that the epoch
has been initialized by an adversary, and no commit has been

issued at epoch.
• ComDB[gid, epoch] = ((c0, ®c), ‘adv’):It indicates that the
epoch has been initialized by an adversary, and a commit

(c0, ®c) has been issued at epoch.

Looking ahead, (assuming the server Sv is honest)ComDB[gid, epoch]
is initialized with ⊥. If some party at epoch − 1 creates a commit,

ComDB[gid, epoch] is initialized to (⊤, ∗), where ∗ depends on
whether the party was honest or corrupt. Once the proposals in at

epoch, i.e.,PropDB[gid, epoch], are committed, thenComDB[gid, epoch]

stores that commit and this freezes the epoch, and initializes a new

ComDB[gid, epoch + 1] = ⊥. This models the fact that a commit is

generated only once per epoch when the server is honest. We refer

the readers to see Sec. 4.2 for a pictorial example.

Interfaces. Fmh
CGKA

offers similar interfaces to the parties as F ctxt
CGKA

.

A party can create a group, create proposal, commit, or welcome

messages, process these messages, and obtain group secret keys. In

addition to these functionalities, it also offers the functionalities of

publishing and fetching messages, which models the message deliv-

ery between a (possibly malicious) party and the server. To formally

capture this, Fmh
CGKA

makes the existence of the server explicit —

recall that the server was implicit in F ctxt
CGKA

and abstracted away

as a malicious network that injects arbitrary message. Specifically

Fmh
CGKA

models an honest-but-curious server. When the server is

corrupted by the adversary, we end up with the same functionality

as F ctxt
CGKA

.

In the following, we explain each of the functionalities in mode

detail.

D.2 Functions Used by Legitimate Parties
Create and register group (See Fig. 36).The designated party idcreator
first creates the group as in F ctxt

CGKA
(cf. Group creation in App. B.2).

idcreator then registers the group to the server via the subroutine

RegisterGroup. F ctxt
CGKA

first checks that the party idcreator is lo-
cated at epoch = 0 (i.e., Ptr[idcreator] = 0). Then, Fmh

CGKA
informs

the adversary that a new group with (gid, 0) is being registered.
• If the server is honest (i.e., ServerStat = ‘good’), the ideal
server checks that the group with gid has not been registered
yet. If so, the server initializes the group asComDB[gid, epoch] ←
(⊤, 0)40 and returns accept = true to the party. Else, the reg-
istration is rejected and the party receives accept = false.
The ideal server outputs (accept, gid, epoch = 0) (to the en-

vironmentZ). Since parties are assumed to access the server

via a client-anonymous authenticated channel, the server

never outputs the accessing party’s identity.

• If the server is malicious, the adversary specifies the proto-

col result accept′, and it is outputted to id. This means the

malicious server can decide the protocol result arbitrarily.

Create and publish proposals (See Fig. 36). When a party id create a

proposal,Z invokes Fmh
CGKA

on input (Propose, act). Fmh
CGKA

first

creates a proposal message p as in F ctxt
CGKA

(cf. Creating proposals
in App. B.2). Then, id publishes p to the server via the subroutine

PublishProposal.

• If the server is honest (i.e., ServerStat = ‘good’), Fmh
CGKA

gives (gid, epoch, p) to the adversary, where (gid, epoch) is
the destination group identity and epoch. The party accesses

the server via the client-anonymous authenticated channel,

and therefore, the adversary does not receive the party’s

identity. The adversary reports whether the protocol suc-

ceeds or not by setting accept′ to true or false. Fmh
CGKA

then

determines the party and server’s output as follows.

40
The RegisterGroup subroutine only occurs when the main group (which is assigned

to node-id = 0) is registered.

50

How to Hide MetaData in MLS-Like Secure Group Messaging:
Simple, Modular, and Post-Quantum CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

– IfComDB[gid, epoch] = (⊤, node-id) and node-id = Ptr[id],
the ideal party always outputs accept := true. This mod-

els correctness: if a party holds the same group state used

to initialize node-id, the server must accept the published

proposal.

– If ComDB[gid, epoch] = (⊤, ‘adv’) and accept′ = true,
the ideal party outputs accept := true. This models the

fact that when the destination (gid, epoch) is initialized
by the adversary, we let the adversary decide if the ideal

server should accept the published proposal or not. Look-

ing at the example from Sec. 4.2, if ComDB[gid, epoch]
was initialized with a fake group statement gvk, then the

adversary can deliberately make the publish proposal fail.

– Otherwise, the ideal party outputs accept := false. This
case occurs if accept′ = false (i.e., the adversary decides

to reject), ComDB[gid, epoch] ≠ (⊤, ∗) (i.e., the destina-
tion has not been initialized or a commit has been issued),

orComDB[gid, epoch] = (⊤, node-id) but node-id ≠ Ptr[id]
(i.e., the party is located in a different commit node).

The ideal server outputs the destination (gid, epoch) and the
published proposal p to Z. Since parties access the server

via a client-anonymous authenticated channel, the server

never outputs the accessing party’s identity.

• If the server is malicious, Fmh
CGKA

gives Ptr[id] to the adver-

sary, where Ptr[id] = node-id is the current commit node

on the history graph, which id is located at. The reason why

we don’t give (gid, epoch) as above is that when the server

is malicious, it can arbitrary fork the group. In such a case,

(gid, epoch) is not enough to identify the location of the

party. Note that in the real protocol, the malicious server

gets to learn which fork a party is in since the party will try

to access the server using the group state. Hence, Ptr[id]
correctly models what the malicious server learns in the real

world. Finally, the adversary specifies the protocol result

accept′, and it is outputted to id. This means the malicious

server can decide the protocol result arbitrarily.

Create and publish commits (See Fig. 36). When a party id wants to

issue a commit message,Z invokes Fmh
CGKA

on input (Commit, svk).
The description composes of two parts.

Fetch proposals. id must first fetch the list of proposals from the

server via the subroutine FetchProposals.

• If the server is honest (i.e., ServerStat = ‘good’), Fmh
CGKA

gives (gid, epoch) to the adversary, where (gid, epoch) is the
destination. Since the party accesses to the server via a client-

anonymous authenticated channel, and therefore the server

does not receive the party’s identity. The adversary reports

whether the protocol succeeds or not by setting accept′ to
true or false, and specifies the proposals ®p′. Fmh

CGKA
then

determines the party and server’s output as follows.

– IfComDB[gid, epoch] = (⊤, node-id) and node-id = Ptr[id],
the ideal party always outputs accept := true and ®p :=

PropDB[gid, epoch]. This models correctnes: if a party

holds the same group state used to initialize node-id, the
server must accept and returns the proposals stored on

the database.

– If ComDB[gid, epoch] = (⊤, ‘adv’) and accept′ = true,
the ideal party outputs accept := true and ®p := PropDB[gid,
epoch]. This models the fact that when the destination

(gid, epoch) is initialized by the adversary, we let the ad-

versary decide if the ideal server should return the stored

proposals or not.

– Otherwise, the ideal party outputs accept := false. This
case occurs if accept′ = false (i.e., the adversary decides

to reject) or ComDB[gid, epoch] = ⊥ (i.e., the destination

has not been initialized).

In all three cases, the ideal server outputs the destination

(gid, epoch) toZ. Since parties access the server via a client-

anonymous authenticated channel, the server never outputs

the accessing party’s identity.

• If the server is malicious, Fmh
CGKA

gives Ptr[id] to the adver-

sary. The adversary specifies the protocol result accept′ and
the proposals ®p′, and they ate outputted to id. This means

the malicious server can return an arbitrary message to the

parties. This is consistent with F ctxt
CGKA

which allows an ad-

versary to inject malicious proposals.

If id successfully fetches the proposals (i.e., id receives accept =
true), then id creates a corresponding commit (c0, ®c) and welcome

messages ®𝑤 = {𝑤 } as in F ctxt
CGKA

(cf. Committing to proposals in
App. B.2).

Publish commit and welcome messages. id finally publishes the

commit and welcome messages to the server. We first describe how

it publishes a commit. Before publishing the commit message, the

party permutes ®c to ®cperm using the function *permute-commit.
This effectively makes the party’s identity and index of ®c unlikable.
Note that the *permute-commit function uses a random permuta-

tion (if safe is true for the id’s current epoch) or a permutation the

adversary chooses (if safe is false). This means if safe is true the
permuted index will look random from the adversary.

• If the server is honest (i.e., ServerStat = ‘good’), Fmh
CGKA

gives (gid, epoch, c0, ®cperm) to the adversary. The party ac-

cesses the server via a client-anonymous authenticated chan-

nel, and therefore, the adversary does not receive the party’s

identity. The adversary reports whether the protocol suc-

ceeds or not by setting accept′ to true or false. Fmh
CGKA

then

determines the party and server’s output as follows.

– IfComDB[gid, epoch] = (⊤, node-id) and node-id = Ptr[id],
the ideal party always outputs accept := true. This mod-

els correctness: if a party holds the same group state used

to initialize node-id, the server must accept the published

commit message.

– If ComDB[gid, epoch] = (⊤, ‘adv’) and accept′ = true,
the ideal party outputs accept := true. This models the

fact that if the destination (gid, epoch) is initialized by the
adversary, we let the adversary decide if the ideal server

accepts the published commit.

– Otherwise, the ideal party outputs accept := false. This
case occurs if accept′ = false (i.e., the adversary decides

to reject), ComDB[gid, epoch] ≠ (⊤, ∗) (i.e., the destina-
tion has not been initialized or a commit message has

been issued), or ComDB[gid, epoch] = (⊤, node-id) but
51

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Keitaro Hashimoto, Shuichi Katsumata, and Thomas Prest

node-id ≠ Ptr[id] (i.e., the party is located in a different

commit node).

In all three cases, the ideal server outputs the destination

(gid, epoch) and the published commit (c0, ®cperm) toZ. Since

parties access the server via a client-anonymous authenti-

cated channel, the server never outputs the accessing party’s

identity.

• If the server is malicious, Fmh
CGKA

gives (Ptr[id], c0, ®cperm) to
the adversary. The adversary specifies the protocol result

accept′, and it is outputted to id. This means the malicious

server can decide the protocol result arbitrarily.

Finally, id publishes the welcome messages𝑤 ∈ ®𝑤 via the sub-

routine PublishWelcome. To hide the relationship among welcome

messages, id publish 𝑤 separately. Fmh
CGKA

informs the adversary

of publishing a welcome message by giving (id𝑡 ,𝑤), where id𝑡 is
the intended recipient of𝑤 . Note that the party accesses the server

via a client-anonymous authenticated channel, and therefore the

adversary does not receive the party’s identity. The adversary re-

ports whether the protocol succeeds or not by setting accept′ to
true or false. Fmh

CGKA
then determines the party and server’s output

as follows.

• If the server is honest (i.e., ServerStat = ‘good’), Fmh
CGKA

stores WelDB[id𝑡] ← 𝑤 and outputs accept := true to id.
The ideal server outputs (id𝑡 ,𝑤). This models correctness:

the honest server always accepts the welcome message and

does not know who sent it.

• If the server is malicious, Fmh
CGKA

outputs accept′ specified
by the adversary. This means the malicious server can decide

the protocol result arbitrarily.

Fetch and process commits (See Fig. 36) To process, party id needs to
fetch the commit and proposals from the server via the subroutine

FetchCommit. Before fetching a commit and proposals, the party

permutes its index to index̂c by the function *permuted-commit-index
to make the party’s identity and index of ®c unlikable. Here, the func-
tion uses a random permutation (if safe is true for the id’s current
epoch) or a permutation the adversary chooses (if safe is false).

This models the fact that if safe is true, then the permuted index

seems random to the adversary.

• If the server is honest (i.e., ServerStat = ‘good’), Fmh
CGKA

gives (gid, epoch, index̂c) to the adversary, where index̂c is
the permuted id’s index. Note that the party accesses to the

server via a client-anonymous authenticated channel, and

therefore, the adversary does not receive the party’s identity.

The adversary reports whether the protocol succeeds or not

by setting accept′ to true or false, and specifies the commit

message (c′
0
, ĉ′, ®p′). Fmh

CGKA
then determines the party and

server’s output as follows.

– IfComDB[gid, epoch] = ((c′
0
, ®c′), node-id) and node-id =

Ptr[id], the ideal party always outputs accept := true and
the commitmessage (c0, ĉ, ®p) := (c′

0
, ®c′ [index̂c], PropDB[gid,

epoch]). This models correctness: if a party holds the same

group state used to initialize node-id, the server must ac-

cept and returns the stored commit (which was received

during protocol PublishCommit)

– If ComDB[gid, epoch] = ((c′
0
, ®c′), ‘adv’) and accept′ =

true, the ideal party outputs accept := true and the com-

mit (c0, ĉ, ®p) := (c′
0
, ®c′ [index̂c], PropDB[gid, epoch]). This

models the fact that if the destination (gid, epoch) was ini-
tialized by the adversary, the adversary gets to decide if

the ideal server accepts.

– Otherwise, the ideal party outputs accept := false. This
case occurs if accept′ = false (i.e., the adversary decides

to reject), ComDB[gid, epoch] ≠ ((c′
0
, ®c′), ∗) (i.e., the des-

tination has not been initialized or a commit message has

not been issued), or ComDB[gid, epoch] = (⊤, node-id)
but node-id ≠ Ptr[id] (i.e., the party is located in a differ-

ent commit node).

In all three cases, the ideal server outputs (gid, epoch, index̂c)
toZ.

• If the server is malicious, Fmh
CGKA

gives (Ptr[id], index̂c) to
the adversary. The adversary specifies the protocol result

accept′ and the commit (c′
0
, ĉ′, ®p′), and it is outputted to id.

This means the malicious server can return an arbitrary mes-

sage to the parties. This is consistent with F ctxt
CGKA

which

allows an adversary to inject malicious commits and propos-

als.

Finally, if id successfully fetches a commit and a list of proposals

(i.e., id receives accept = true), id then processes them as in F ctxt
CGKA

(cf. Processing commits in App. B.2).

Join a group (See Fig. 36). To join a group, party id fetches a wel-

come message from the server via the subroutine FetchWelcome.

Fmh
CGKA

first informs the adversary that id fetches a welcome mes-

sage. In this case, the server and the adversary lean who is accessing.

The adversary reports whether the protocol succeeds or not by set-

ting accept′ to true or false, and specifies the welcome message𝑤 ′.
Fmh
CGKA

then determines the party and server’s output as follows.

• If the server is honest (i.e., ServerStat = ‘good’), Fmh
CGKA

returns to id the welcome message𝑤 := WelDB[id] stored
in its database or accept = false if WelDB[id] = ⊥. This
models correctness: the honest server must return the mes-

sage received during the subroutine PublishWelcome. The
ideal server outputs the accessing party’s identity id, which
models the fact that any concrete protocol allows the server

to know who was fetching the welcome message.

• If the server is malicious, the specified welcome message𝑤 ′

is outputted to id. This models that the malicious server can

send an arbitrary message to parties.

Finally, if id successfully fetches a welcome message (i.e., id re-

ceives accept = true), Fmh
CGKA

then processes the welcome message

as in F ctxt
CGKA

(cf. Joining a group in App. B.2).

Group keys (See Fig. 36). Parties can fetch the current group secret

via the Key query. The returned group secret k is random if the

protocol guarantees its confidentiality (identified by the safe predi-
cate). Otherwise, k is set by the adversary. Unlike F ctxt

CGKA
, Fmh

CGKA

only provides an interface to retrieve one group secret k. That is, it
does not have the interface to retrieve the group metadata secret

kmh and the next key function. This is because, those were special

keys only used to secure the dynamic metadata (see App. E), and

52

How to Hide MetaData in MLS-Like Secure Group Messaging:
Simple, Modular, and Post-Quantum CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

in particular, Fmh
CGKA

only requires one group secret k that will be
used to exchange the actual message.

Corruption. Similar to F ctxt
CGKA

, the adversary can obtain party id’s
internal states via the (exposed, id) query. To prevent the so-called
commitment problem, Fmh

CGKA
fixes the value of the safety predicate

safe when a new group or epoch is initialized. This is controlled by

the function *mark-next-db-initialized-epoch in Create and

Commit. This is because the group secret generated at a specific

commit node is explicitly used in the real protocol and we must

restrict the adversary to not corrupting these nodes in order not

to trivially win the security game. In addition, the adversary can

corrupt the server via the CorruptServer query, and take over

the role of the server. For simplicity, we assume once the server

becomes malicious, it remains malicious and will never become

honest. Finally, as mentioned in the overview, we do not consider

adversary-controlled randomness in the current model.

D.3 Functions Used by the Adversary
Fmh
CGKA

offers the publish and fetch message interfaces to the adver-

sary so that it can impersonate an honest party to a server. Similar to

the case an honest party accesses the sever, Fmh
CGKA

defines the ideal

function when the adversary (malicious party) accesses the server.

Since the party is malicious, Fmh
CGKA

never requires correctness. In

contrast, Fmh
CGKA

defines the security requirements: It defines the

conditions under which the adversary can access the server. In case

the conditions do not hold, the functionality models the fact that

the adversary cannot access the server. Note that when both party

and server are malicious, Fmh
CGKA

does nothing since the adversary

can perform all the protocols by itself.

Publish or fetch proposal or commit messages by the adversary.To pub-
lish a proposal or commit, the adversary sends PublishProposalAdv

or PublishCommitAdv to Fmh
CGKA

. F ctxt
CGKA

determines the server’s

output as follows.

• If ComDB[gid, epoch] = (⊤, node-id) and accept′ = true,

Fmh
CGKA

checks whether authenticity is guaranteed for the

honestly generated epoch node-id by the safety predicate

adv-access-allowed(node-id). If the predicate returns false,
then Fmh

CGKA
halts. This models the fact that the adversary

can publish messages for an honestly initialized epoch only

when adversarial access is allowed. If access is allowed, the

server stores the published message from the adversary in

its database.

• If ComDB[gid, epoch] = (⊤, ‘adv’) and accept′ = true, the
ideal server outputs accept := true. This models the fact

that if the destination (gid, epoch) was initialized by the

adversary, the adversary gets to decide whether the ideal

server accepts.

• Otherwise, the ideal server outputs accept := false. This
case occurs if accept′ = false (i.e., the adversary decides

to reject) or ComDB[gid, epoch] ≠ (⊤, ∗) (i.e., the destina-
tion has not been initialized or a commit message has been

issued).

To fetch proposals, the adversary sends FetchProposalsAdv to

Fmh
CGKA

. Fmh
CGKA

determines the server’s output as follows.

• If ComDB[gid, epoch] = (∗, node-id) and accept′ = true,

Fmh
CGKA

checks whether authenticity is guaranteed for the

honestly generated epoch node-id by the safety predicate

adv-access-allowed(node-id).If the predicate returns false,
then Fmh

CGKA
halts. This models the fact that the adversary

can fetch proposals from an honestly initialized epoch only

when adversarial access is allowed. If the access is allowed,

the adversary obtains ®p := PropDB[gid, epoch].
• If ComDB[gid, epoch] = (∗, ‘adv’) and accept′ = true, the
ideal server outputs accept := true. This models the fact

that if the destination (gid, epoch) was initialized by the

adversary, the adversary can decide to accept.

• Otherwise, the ideal party outputs accept := false. This
case occurs if accept′ = false (i.e., the adversary decides to

reject) or ComDB[gid, epoch] = ⊥ (i.e., the destination has

not been initialized).

Finally, to publish a proposal or a commit the adversary sends

(FetchCommitAdv, gid, epoch, index) to Fmh
CGKA

. Fmh
CGKA

determines

the server’s output as follows.

• If ComDB[gid, epoch] = ((c′
0
, ®c′), node-id) and accept′ =

true, Fmh
CGKA

checks whether authenticity is guaranteed for

the honestly generated epoch node-id by the safety pred-

icate adv-access-allowed(node-id). If If the predicate re-

turns false, then Fmh
CGKA

halts. This models the fact that

the adversary can fetch messages for an honestly initial-

ized epoch only when adversarial access is allowed. If ac-

cess is allowed, the adversary obtains the stored (c0, ĉ, ®p) :=
(c′
0
, ®c′ [index̂c], PropDB[gid, epoch]).

• IfComDB[gid, epoch] = ((c′
0
, ®c′), ‘adv’) and accept′ = true,

the adversary obtains the stored (c0, ĉ, ®p) := (c′
0
, ®c′ [index̂c],

PropDB[gid, epoch]). This models the fact that if the des-

tination (gid, epoch) was initialized by the adversary, the

adversary can decide to accept.

• Otherwise, the ideal party outputs accept := false. This
case occurs if accept′ = false (i.e., the adversary decides to

reject) or ComDB[gid, epoch] ≠ ((c′
0
, ®c′), ∗) (i.e., the desti-

nation has not been initialized or a commit message has not

been issued).

Publish or fetch welcome messages by the adversary. To publish or

fetchmessages, the adversary sends PublishWelcome or FetchWelcome

to Fmh
CGKA

. In this case, Fmh
CGKA

determines the server’s output as in

the case an honest party accesses the server. The protocol succes-

sion means the adversary succeeds to publish or fetch a welcome

message.

53

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Keitaro Hashimoto, Shuichi Katsumata, and Thomas Prest

Initialization

1 : // Line 1 to 7 below are identical to selective downloading Fctxt
CGKA

2 : Ptr[∗], Prop[∗],Node[∗],Wel[∗] ← ⊥
3 : propCtr, nodeCtr← 1

4 : flagselDL = true,DesignatedCom[∗] ← ⊥
5 : flagcontHide = true

6 : PropID[∗],NodeID[∗] ← ⊥
7 : RandCorr[∗] ← ‘good’

8 : // Initialize below for dynamic metadata-hiding

9 : flagdbinit = true

10 : PropDB[∗, ∗],ComDB[∗, ∗],WelDB← ⊥
11 : ServerStat← ‘good’

Input from the party idcreator
Input (Create, svk)
1 : req Ptr[idcreator] = ⊥
2 : // Run identical code as Input (Create, svk) of Fctxt

CGKA
,

3 : // excluding the final return (gid, 0,mem) line

4 : ⟨⟨Insert (Create, svk) of Fctxt
CGKA

⟩⟩
5 : req RegisterGroup(gid, 0)
6 : *mark-next-db-initialized-epoch(Ptr[idcreator])

Subroutine RegisterGroup(gid, epoch)
1 : channelType← (‘anon’,⊥, Sv)
2 : req Ptr[id] = 0

3 : Send (channelType, RegisterGroup, gid, 0) to S and

receive accept′

4 : // If Sv is good, then accept if ComDB[gid, ∗] is empty

5 : if ServerStat = ‘good’ then

6 : if ComDB[gid, ∗] = ⊥ then

7 : accept ← true

8 : // Main group is assigned to node-id = 0. ComDB[gid, 0] ← (⊤, 0)
9 : else

10 : accept ← false

11 : Send (channelType, RegisterGroup, (accept, gid, 0)) to Sv

12 : // If Sv is corrupt, then let S decide if Sv accepts

13 : else

14 : accept ← accept′

15 : return accept

Input Key

1 : // Run identical code as Input (Key) of Fctxt
CGKA

,

2 : // including the final return Node[Ptr[id]] .key line

3 : ⟨⟨Inset (Key) of Fctxt
CGKA

⟩⟩

Inputs from a party id
Input (Propose, act), act ∈ { ‘upd’-svk, ‘add’-id𝑡 , ‘rem’-id𝑡 }
1 : req Ptr[id] ≠ ⊥
2 : gid← Node[Ptr[id]] .gid; epoch← Node[Ptr[id]] .epoch
3 : // Run identical code as Input (Propose, act) of Fctxt

CGKA
,

4 : // excluding the final return p line

5 : ⟨⟨Insert (Propose, act) of Fctxt
CGKA

⟩⟩
6 : req PublishProposal(gid, epoch, p)
7 : return p

Input (Commit, svk)
1 : req Ptr[id] ≠ ⊥
2 : gid← Node[Ptr[id]] .gid; epoch← Node[Ptr[id]] .epoch
3 : (accept, ®p) ← FetchProposals(gid, epoch)
4 : req accept

5 : // Run identical code as Input (Commit, ®p, svk) of Fctxt
CGKA

,

6 : // excluding the final return (c0, ®c, ®𝑤 = { 𝑤 }) line

7 : ⟨⟨Insert (Commit, ®p, svk) of Fctxt
CGKA

⟩⟩
8 : // Permute the order of party sensitive commitment ®c

9 : ®cperm ← *permute-commit(Ptr[id], ®c)
10 : try PublishCommit(gid, epoch, c0, ®cperm)
11 : foreach 𝑤 ∈ ®𝑤 do

12 : parse (id𝑡 , ∗) ← 𝑤

13 : try PublishWelcome(id𝑡 , 𝑤)
14 : *mark-next-db-initialized-epoch(NodeID[c0])
15 : return (c0, ®cperm, ®𝑤)

Input Process

1 : req Ptr[id] ≠ ⊥
2 : gid← Node[Ptr[id]] .gid; epoch← Node[Ptr[id]] .epoch
3 : // Permuted index of party id required for selective downloading.

4 : index̂c ← *permuted-commit-index(Ptr[id], id)
5 : (accept, c0, ĉ, ®p) ← FetchCommit(gid, epoch, index̂c)
6 : req accept

7 : // Run identical code as Input (Process, c0, ĉ, ®p) of Fctxt
CGKA

,

8 : // including the final return *output-proc(node-id′) line

9 : ⟨⟨Insert (Process, c0, ĉ, ®p) of FctxtCGKA
⟩⟩

Input Join

1 : req Ptr[id] = ⊥
2 : (accept, 𝑤) ← FetchWelcome(id)
3 : req accept

4 : // Run identical code as Input (Join, 𝑤) of Fctxt
CGKA

,

5 : // including the final return *output-join(node-id) line

6 : ⟨⟨Insert (Join, 𝑤) of Fctxt
CGKA

⟩⟩

Figure 36: The ideal MH-CGKA functionality Fmh
CGKA: Create, Propose, Commit, Process, and Join interface for honest parties.

For better readability, we outsource the lines identical to F ctxt
CGKA to Fig. 13. Note that the Create function is invoked only once

by the previously designated party idcreator. (Only one idcreator exists.)

54

How to Hide MetaData in MLS-Like Secure Group Messaging:
Simple, Modular, and Post-Quantum CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

Subroutine PublishProposal(gid, epoch, p)
1 : channelType← (‘anon’,⊥, Sv) // Connect to the server via anonymous channel.

2 : if ServerStat = ‘good’ then

3 : Send (channelType, PublishProposal, gid, epoch, p) to S and

receive accept′

4 : // If the party assigned to gid-epoch accesses, the server must accept.

5 : if ComDB[gid, epoch] = (⊤, node-id) ∧ node-id = Ptr[id] then
6 : PropDB[gid, epoch] ++← p

7 : accept ← true

8 : // If gid-epoch was initialized by the adversary, S decide to accept or reject.

9 : elseif ComDB[gid, epoch] = (⊤, ‘adv’) ∧ accept′ then
10 : PropDB[gid, epoch] ++← p

11 : accept ← true

12 : // Otherwise, the server must reject.

13 : else

14 : accept ← false

15 : Send (channelType, PublishProposal, (accept, gid, epoch, p)) to Sv

16 : // If Sv is corrupt, then S decides if Sv accepts.

17 : else

18 : Send (channelType, PublishProposal, Ptr[id], p) to S and

receive accept′

19 : accept ← accept′

20 : return accept

Subroutine FetchProposals(gid, epoch)
1 : channelType← (‘anon’,⊥, Sv) // Connect to the server via anonymous channel.

2 : if ServerStat = ‘good’ then

3 : Send (channelType, FetchProposals, gid, epoch) to S and

receive accept′

4 : // If the party assigned to gid-epoch accesses, the server must accept.

5 : if ComDB[gid, epoch] = (∗, node-id) ∧ node-id = Ptr[id] then
6 : (accept, ®p) ← (true, PropDB[gid, epoch])
7 : // If gid-epoch was initialized by the adversary, S decide to accept or reject.

8 : elseif ComDB[gid, epoch] = (∗, ‘adv’) ∧ accept′ then
9 : (accept, ®p) ← (true, PropDB[gid, epoch])
10 : // Otherwise, the server must reject.

11 : else

12 : (accept, ®p) ← (false,⊥)
13 : Send (channelType, FetchProposals, (accept, gid, epoch)) to Sv

14 : // If Sv is corrupt, then S decides what Sv returns to id.

15 : else

16 : Send (channelType, FetchProposals, Ptr[id]) to S and

receive (accept′, ®p′)
17 : (accept, ®p) ← (accept′, ®p′)
18 : return (accept, ®p)

Subroutine PublishCommit(gid, epoch, c0, ®cperm)
1 : channelType← (‘anon’,⊥, Sv) // Connect to the server via anonymous channel.

2 : if ServerStat = ‘good’ then

3 : Send (channelType, PublishCommit, gid, epoch, c0, ®cperm) to S and

receive accept′

4 : // If the party uses the state assigned to gid-epoch, the server must accept.

5 : if ComDB[gid, epoch] = (⊤, node-id) ∧ node-id = Ptr[id] then
6 : ComDB[gid, epoch] ← ((c0, ®cperm), node-id)
7 : // If an honest party initialize the next epoch, the corresponding node is marked.

8 : ComDB[gid, epoch + 1] ← (⊤,NodeID[c0])
9 : accept ← true

10 : // If gid-epoch was initialized by the adversary, S decide to accept or reject.

11 : elseif ComDB[gid, epoch] = (⊤, ‘adv’) ∧ accept′ then
12 : ComDB[gid, epoch] ← ((c0, ®cperm), ‘adv’)
13 : // If an honest party initialize the next epoch, the corresponding node is marked.

14 : ComDB[gid, epoch + 1] ← (⊤,NodeID[c0])
15 : accept ← true

16 : // Otherwise, the server must reject.

17 : else

18 : accept ← false

19 : Send (channelType, PublishCommit, (accept, gid, epoch, c0, ®cperm)) to Sv

20 : // If Sv is corrupt, then S decides if Sv accepts.

21 : else

22 : Send (channelType, PublishCommit, gid, epoch, c0, ®cperm) to S and

receive accept′

23 : accept ← accept′

24 : return accept

Subroutine FetchCommit(gid, epoch, index̂c)
1 : channelType← (‘anon’,⊥, Sv) // Connect to the server via anonymous channel.

2 : if ServerStat = ‘good’ then

3 : Send (channelType, FetchCommit, gid, epoch, index̂c) to S and

receive accept′

4 : // If the party assigned to gid-epoch accesses, the server must accept.

5 : if ComDB[gid, epoch] = ((c′
0
, ®c′), node-id) ∧ node-id = Ptr[id] then

6 : (accept, c0, ĉ, ®p) ← (true, c′0, ®c′ [index̂c], PropDB[gid, epoch])
7 : // If gid-epoch was initialized by the adversary, S decide to accept or reject.

8 : elseif ComDB[gid, epoch] = ((c′
0
, ®c′), ‘adv’) ∧ accept′ then

9 : (accept, c0, ĉ, ®p) ← (true, c′0, ®c′ [index̂c], PropDB[gid, epoch])
10 : // Otherwise, the server must reject.

11 : else

12 : (accept, c0, ĉ, ®p) ← (false,⊥,⊥,⊥)
13 : Send (channelType, FetchCommit, (accept, gid, epoch, index̂c) to Sv

14 : else

15 : Send (channelType, FetchCommit, Ptr[id], index̂c) to S and

receive (accept′, c′
0
, ĉ′, ®p′)

16 : (accept, c0, ĉ, ®p) ← (accept′, c′0, ĉ′, ®p′)
17 : return (accept, c0, ĉ, ®p)

Figure 37: The ideal metadata-hiding CGKA functionality Fmh
CGKA: subroutines for publish and fetch proposal and commit

messages. They are used in Propose, Commit and Process interface shown in Fig. 36. If ®c = ⊥, we define ®c[index] = ⊥ for any
index index.

55

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Keitaro Hashimoto, Shuichi Katsumata, and Thomas Prest

Input from a party id or adversary S
Input PublishWelcome(id𝑡 ,𝑤)
1 : // Connect to the server via anonymous channel.

2 : channelType← (‘anon’,⊥, Sv)
3 : Send (channelType, PublishWelcome, id𝑡 , 𝑤) to S and receive accept′

4 : // If Sv is honest, then store 𝑤 inWelDB

5 : if ServerStat = ‘good’ then

6 : accept ← true

7 : WelDB[id𝑡] ← 𝑤

8 : Send (channelType, PublishWelcome, (accept, id𝑡 , 𝑤)) to Sv

9 : // If Sv is corrupt, then S decides if Sv accepts.

10 : else

11 : accept ← accept′

12 : // If invoked by S, then no output is required

13 : if ServerStat = ‘good’ ∨ invoked by party id then

14 : return accept

Input FetchWelcome(id)
1 : // Connect to the server via authenticated channel.

2 : channelType← (‘auth’, id, Sv)
3 : Send (channelType, FetchWelcome) to S and receive (accept′, 𝑤′)
4 : if ServerStat = ‘good’ then

5 : if WelDB[id] ≠ ⊥ then

6 : (accept, 𝑤) ← (true,WelDB[id])
7 : else

8 : (accept, 𝑤) ← (false,⊥)
9 : Send (channelType, FetchWelcome, (accept, id)) to Sv

10 : // If Sv is corrupt, then let S decide Sv’s output

11 : else

12 : (accept, 𝑤) ← (accept′, 𝑤′)
13 : // If invoked by S, then no output is required

14 : if ServerStat = ‘good’ ∨ invoked by party id

15 : return (accept, 𝑤)

Figure 38: The ideal metadata-hiding CGKA functionality Fmh
CGKA: Subroutines for publish and fetch welcome messages. They

are used in Commit and Join interface shown in Fig. 36.

*permuted-commit-index(node-id, id)
1 : assert Node[node-id] ≠ ⊥
2 : // If flagselDL is false, there is no need to permute index.

3 : if ¬flagselDL then
4 : return ⊥
5 : mem← Node[node-id] .mem

6 : assert id ∈ mem

7 : index← Node[node-id] .index(id)
8 : if Node[node-id] .perm = ⊥ then

9 : *set-index-permutation(node-id)
10 : 𝜙 ← Node[node-id] .perm
11 : return 𝜙 (index)

*permute-commit(node-id, ®c)
1 : assert Node[node-id] ≠ ⊥
2 : // If flagselDL is false, no party-dependent commitment can exist.

3 : if ¬flagselDL then
4 : assert ®c = ⊥
5 : return ⊥
6 : if Node[node-id] .perm = ⊥ then

7 : *set-index-permutation(node-id)
8 : 𝜙 ← Node[node-id] .perm
9 : ®cperm ← ()
10 : for index = 1, . . . , |®c | do
11 : ®cperm ++← ®c[𝜙 (index)]
12 : return ®cperm

*set-index-permutation(node-id)
1 : mem← Node[node-id] .mem

2 : // If the input node is not corrupted,

// sample a random permutation over 𝑆 |mem| .

3 : if random-index(node-id) then
4 : 𝜙 ←$𝑆 |mem|
5 : Node[node-id] .perm← 𝜙

6 : else

7 : Send (Permutation, node-id) to S and

receive 𝜙

8 : assert 𝜙 ∈ 𝑆 |mem|

9 : Node[node-id] .perm← 𝜙

Figure 39: Helper function: Permute indices. 𝑆 |mem | is the set of permutations on the range [|mem|].

56

How to Hide MetaData in MLS-Like Secure Group Messaging:
Simple, Modular, and Post-Quantum CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

Input from the adversary S
Input (PublishProposalAdv, gid, epoch, p)
1 : channelType← (‘anon’,⊥, Sv)
2 : Send (channelType, PublishProposalAdv, gid, epoch, p) to S and

receive accept′

3 : // The honest server accepts if S decides to accept and ComDB[gid, epoch] = (⊤, ∗) .

4 : if ServerStat = ‘good’ then

5 : if ComDB[gid, epoch] = (⊤, node-id) ∧ accept′ then
6 : // If gid-epoch was initialized by an honest party, Fmh

CGKA
checks authenticity is guaranteed.

7 : assert adv-access-allowed(node-id)
8 : PropDB[gid, epoch] ++← p

9 : accept ← true

10 : elseif ComDB[gid, epoch] = (⊤, ‘adv’) ∧ accept′ then
11 : PropDB[gid, epoch] ++← p

12 : accept ← true

13 : else

14 : accept ← false

15 : Send (channelType, PublishProposal, (accept, gid, epoch, p)) to Sv

16 : return accept

Input (FetchProposalsAdv, gid, epoch)
1 : channelType← (‘anon’,⊥, Sv)
2 : Send (channelType, FetchProposalsAdv, gid, epoch) to S and

receive accept′

3 : // The honest server accepts if S decides to accept and ComDB[gid, epoch] ≠ ⊥.

4 : if ServerStat = ‘good’ then

5 : elseif ComDB[gid, epoch] = (∗, node-id) ∧ accept′ then
6 : // If gid-epoch was initialized by an honest party, Fmh

CGKA
checks authenticity is guaranteed.

7 : assert adv-access-allowed(node-id)
8 : (accept, ®p) ← (true, PropDB[gid, epoch])
9 : elseif ComDB[gid, epoch] = (∗, ‘adv’) ∧ accept′ then
10 : (accept, ®p) ← (true, PropDB[gid, epoch])
11 : else

12 : (accept, ®p) ← (false,⊥)
13 : Send (channelType, FetchProposals, (accept, gid, epoch) to Sv

14 : return (accept, ®p)

Input (PublishCommitAdv, gid, epoch, c0, ®c)
1 : channelType← (‘anon’,⊥, Sv)
2 : Send (channelType, PublishCommitAdv, gid, epoch, c0, ®c) to S and

receive accept’

3 : // The honest server accepts if S decides to accept and ComDB[gid, epoch] = (⊤, ∗) .

4 : if ServerStat = ‘good’ then

5 : ComDB[gid, epoch]
6 : elseif ComDB[gid, epoch] = (⊤, node-id) ∧ accept′ then
7 : // If gid-epoch was initialized by an honest party, Fmh

CGKA
checks authenticity is guaranteed.

8 : assert adv-access-allowed(node-id)
9 : ComDB[gid, epoch] ← ((c0, ®c), node-id)
10 : // If injection succeeds, the next epoch is marked as adversarial initialized.

11 : ComDB[gid, epoch + 1] ← (⊤, ‘adv’)
12 : elseif ComDB[gid, epoch] = (⊤, ‘adv’) ∧ accept′ then
13 : ComDB[gid, epoch] ← ((c0, ®c), ‘adv’)
14 : // If injection succeeds, the next epoch is marked as adversarial initialized.

15 : ComDB[gid, epoch + 1] ← (⊤, ‘adv’)
16 : else

17 : accept ← false

18 : Send (channelType, PublishCommit, (accept, gid, epoch, c0, ®c)) to Sv

19 : return accept

Input (FetchCommitAdv, gid, epoch, index)
1 : channelType← (‘anon’,⊥, Sv)
2 : Send (channelType, FetchCommitAdv, gid, epoch, index) to S and

receive accept′

3 : // The honest server accepts if S decides to accept and ComDB[gid, epoch] = ((c′
0
, ®c′), ∗) .

4 : if ServerStat = ‘good’ then

5 : if ComDB[gid, epoch] = ((c′
0
, ®c′), node-id) ∧ accept′ then

6 : // If gid-epoch was initialized by an honest party, Fmh
CGKA

checks authenticity is guaranteed.

7 : assert adv-access-allowed(node-id)
8 : (accept, c0, ĉ, ®p) ← (true, c′0, ®c′ [index], PropDB[gid, epoch])
9 : if ComDB[gid, epoch] = ((c′

0
, ®c′), ‘adv’) ∧ accept′ then

10 : (accept, c0, ĉ, ®p) ← (true, c′0, ®c′ [index], PropDB[gid, epoch])
11 : else

12 : (accept, c0, ĉ, ®p) ← (false,⊥,⊥,⊥)
13 : Send (channelType, PublishProposal, (accept, gid, epoch, index) to Sv

14 : return (accept, c0, ĉ, ®p)

Figure 40: The ideal metadata-hiding CGKA functionality Fmh
CGKA: Interface for the adversary S. If ®c = ⊥, ®c[index] is defined to

be ⊥ for any index.

57

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Keitaro Hashimoto, Shuichi Katsumata, and Thomas Prest

Input (Expose, id)
1 : if Ptr[id] ≠ ⊥ then

2 : Node[Ptr[id]] .exp +← id

3 : *update-stat-after-exp(id) // Pending secrets are marked as exposed.

4 : svk← Node[Ptr[id]] .mem[id]
5 : Send (exposed, id, svk) to FAS
6 : Send (Ptr[id],Node[Ptr[id]]) to S // All information stored in Node[Ptr[id]] is sent to S.

7 : Send (exposed, id) to FKS
8 : restrict ∀node-id :

9 : if Node[node-id] .chall = true then safe(node-id) = true

10 : if Node[node-id] .conthide = true then safe(node-id) = true

11 : if Node[node-id] .dbinit = true then safe(node-id) = true

Input CorruptServer

1 : // Once corrupted, the server remains corrupted.

2 : ServerStat← ‘adv’

*mark-next-db-initialized-epoch(node-id)
1 : if safe(node-id) then
2 : Node[node-id] .dbinit← true

3 : else

4 : Node[node-id] .dbinit← false

Figure 41: The metadata-hiding CGKA functionality Fmh
CGKA: Corruptions from the adversary S. The difference between those

of F ctxt
CGKA is highlighted in yellow. S can call CorruptServer only once.

58

How to Hide MetaData in MLS-Like Secure Group Messaging:
Simple, Modular, and Post-Quantum CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

E METADATA-HIDING CGKA:
CONSTRUCTION AND SECURITY PROOF

E.1 Constructing the Wrapper Protocol𝑊 mh

In this section, we propose a metadata CGKA 𝑊mh
and prove

that it UC-realizes Fmh
CGKA

in the F ctxt
CGKA

-hybrid model. We call

𝑊mh
as a wrapper protocol since it works as a wrapper around

any static metadata-hiding CGKA that UC-realizes F ctxt
CGKA

, and

turns it into full metadata-hiding CGKA. In particular, the sole

functionality of𝑊mh
is to take care of how the proposals, commits,

and welcome messages are uploaded and downloaded from the

server in a dynamic metadata-hiding manner. The construction is

very simple and can be implemented only from a standard signature

scheme.

G.gid The identifier of the group.

G.epoch The current epoch number.

G.mem A list of (id, svk)-pair. The list is sorted in

lexicographic order by ids.
(G.gsk,G.gvk) The group signature key used to authenti-

cate group membership to the server.

G.permKey The PRP key used to permute member index

in membership list.

G.indexOf (id) Returns the index of id in the list G.mem.

Table 9: The party’s protocol state and helper method.

PropDB[∗, ∗] It stores a list of proposal message p issued

at (gid, epoch).
ComDB[∗, ∗] It stores a group signature key gvk used to

authenticate membership on (gid, epoch)
and possibly a commit message (c0, ®c) to
move to (gid, epoch).

WelDB[∗] It stores a welcome message𝑤 for id.
Table 10: The server’s protocol state.

E.1.1 Protocol States. Each party holds a group state G. It consists
of the variables listed in Tab. 9. The G.mem list stores the group

member’s identity and its signature key. The list is sorted in lexico-

graphic order by the party’s identity. Parties can fetch the index of

their identities in G.mem via the method G.indexOf (∗).
The server keeps three databases: PropDB[∗, ∗], ComDB[∗, ∗],

andWelDB[∗].PropDB[∗, ∗] andComDB[∗, ∗] both use (gid, epoch)
as indices to store proposals and commits, respectively. We refer

the readers to Sec. 4.2 for a pictorial example, where we merge the

PropDB and ComDB into one database in the figures.

• PropDB[gid, epoch] = ®p: The proposal database stores the
list of proposals ®p created at (gid, epoch). These proposals,
once committed, are used to move any party at epoch to the

next epoch′ = epoch + 1, where the group state is updated

accordingly to the proposals.

• ComDB[gid, epoch] = (gvk, c0, ®c) or (gvk,⊥,⊥): The com-

mit database stores a group signing key (also called a group

statement) gvk. This will be used by a group member at

epoch to anonymously prove that they are indeed a group

member. ComDB[gid, epoch] is initialized with (gvk,⊥,⊥)
and is later updated to (gvk, c0, ®c) when some party creates a

commit (c0, ®c)with the proposals stored inPropDB[gid, epoch].
OnceComDB[gid, epoch] has a commit stored, then no other

commits can be made at this epoch.

• WelDB[id] = 𝑤 : It stores a welcome message for id. We

assume WelDB[id] stores only one welcome message for id.
This is due to the fact that previous CGKA UC-security mod-

els assume a party can join at most one group (i.e., Ptr[id]
identifies the unique group that id is a member of). In our

protocol, when the server receives a new welcome message

(id,𝑤), it overwrites it as WelDB[id] := 𝑤 . We emphasize

that this restriction is required only to prove UC-security,

59

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Keitaro Hashimoto, Shuichi Katsumata, and Thomas Prest

and functionality-wise, WelDB[id] can store as many wel-

come messages as it needs.

E.1.2 Protocol Algorithms. The main interface and the associated

helper functions are depicted in Fig. 42. The protocol𝑊mh
is defined

in the F ctxt
CGKA

-hybrid model and internally calls F ctxt
CGKA

to create a

group, generate and process protocol messages. To register groups

and publish or fetch protocol messages, it uses the subroutines

depicted in Figs. 43 to 49.

Group Creation.Agroup can be created by the group creator idcreator
by invoking Fmh

CGKA
on input (Create, svk). The group creator first

invokes F ctxt
CGKA

with the same input. Then, it runs the helper func-

tion *init-states to initialize the group state of the wrapper

protocol. Note that *init-states internally queries (Keymh) to
F ctxt
CGKA

to use the group secret kmh. Finally, it executes the group

registration protocol RegisterGroup shown in Fig. 43. The group

creator sends the new group’s group identity gid, epoch counter

epoch, and group signature key gvk via a client-anonymous au-

thenticated channel. Upon receiving the group creation message,

the server checks that a group with the same identity does not exist

and the epoch counter is equal to 0. If the check passes, the server

stores (gvk,⊥,⊥) in ComDB[gid, 0]. Finally, the server notifies the
party of the success or failure of the group creation. The group

creator checks the protocol result. If group creation fails, it unwinds

all state changes and outputs ⊥.
Proposal. A party located at (gid, epoch) can generate a proposal

message p by invoking Fmh
CGKA

on input (Propose, act). Then, it
executes the publish proposal protocol PublishProposal shown
in Fig. 44, where party accesses the server via a client-anonymous

authenticated channel. The party and the server perform a challenge-

response type membership authentication protocol, that allows a
party to anonymously prove that it is a valid group member for

(gid, epoch). In more detail, upon receiving the PublishProposal
proposal message, the server chooses a random challenge message

ch ← {0, 1}𝜅 and sends it to the party. The party then signs the

challenge with its group signing key G.ssk and sends the signature

𝜎 along with the destination (gid, epoch) and the proposal p. The
server checks that ComDB[gid, epoch] = (gvk,⊥,⊥) and the sig-

nature 𝜎 is valid with respect to gvk. If the check passes, the server

stores the proposal p in PropDB[gid, epoch]. Note that the server
rejects the proposal if ComDB[gid, epoch] contains a commit since

this indicates that a new epoch has been created. We later show

in App. E.2 that the above membership authentication protocol

can be made non-interactive if we allow the server to perform an

additional simple check on the database.

Commit. A party located at (gid, epoch) can perform a commit by

invoking Fmh
CGKA

on input (Commit, svk). The party first executes

the subroutine FetchProposals shown in Fig. 45 to download the

list of proposals created in (gid, epoch). FetchProposals consists

of a challenge-response type membership authentication protocol

almost identical to PublishProposal explained above. Once the

server accepts, it is convinced that the calling anonymous party

is indeed a valid group member at epoch so it sends the list of

proposals ®p stored in the database PropDB[gid, epoch].
Once the party succeeds in fetching the proposals ®p, it gener-

ates a commit and welcome messages (c0, ®c, ®𝑤) by invoking F ctxt
CGKA

on input (Commit, svk, ®p). The list ®c is then randomly permuted to

®cperm by *permute-commit. This procedure allows for a shuffle of

the order of themember for each new epoch andmakes the selective

downloading performed during FetchCommit unlinkable between

different epochs. The party then publishes (c0, ®cperm, ®𝑤) by perform-

ing two different uploads. It first executes PublishCommit in Fig. 46
to publish the commit (c0, ®cperm). The party accesses the server via a
client-anonymous authenticated channel and performs the authen-

tication protocol with the server similar to PublishProposal. After
generating the response signature 𝜎 , the party further generates a

group signature key (gvk′, gsk′) for the next epoch. This is gener-
ated from the group secret kmh

′
at the next epoch, which can be

obtained by querying (NextKeymh, c0) to F ctxt
CGKA

. The party finally

sends (𝜎, gid, epoch, c0, ®cperm, gvk′) to the server. If the signature

𝜎 is a valid signature with respect to the group signing key stored

in ComDB[gid, epoch] = (gvk,⊥,⊥), then it updates the database

by ComDB[gid, epoch] ← (gvk, c0, ®cperm). In case a commit was

already stored, the server rejects the commit. Moreover, the server

initializes a new entry in the database asComDB[gid, epoch+1] ←
(gvk′,⊥,⊥). This creates a new epoch to which the parties can up-

load new proposals. The server returns whether it succeeded or not

to the party.

If the party succeeds to publish the commit and welcome mes-

sages exit (i.e., ®𝑤 ≠ ∅), it then further executes PublishWelcome
shown in Fig. 48 for each𝑤 ∈ ®𝑤 . The party accesses the server via

a client-anonymized authenticated channel and uploads (id𝑡 ,𝑤),
where id𝑡 is extracted from𝑤 . The server stores𝑤 inWelDB[id𝑡].
Here, there is no membership authentication protocol.

Process. A party located at (gid, epoch) can try to process the cur-

rent commit and proposals by invoking Fmh
CGKA

on input (Process).
The party first executes the FetchCommit subroutine shown in Fig. 47
to download a commit and their associating proposals. The FetchCommit
protocol is similar to the FetchProposals protocol. The party and

server engage in the membership authentication protocol explained

above. Notably, the party sends an index that specifies the index of
the party-dependent commit the party wants to download. Since the

party sends an epoch-dependent permuted index using the func-

tion *permuted-commit-index, the index from different epochs

remain unlinkable. If the server accepts the party, it returns the

list of proposals ®p stored on the database PropDB[gid, epoch], the
party independent commit c0, and the party dependent commit

ĉ := ®cperm [index] stored on the database ComDB[gid, epoch].
Upon fetching the content (c0, ĉ, ®p), the party processes them

by invoking F ctxt
CGKA

on input (c0, ĉ, ®p). Finally, it also updates the

internal state by calling *update-states function.

Join. A party can join a group by invoking Fmh
CGKA

on input (Join).
The party first executes the FetchWelcome subroutine shown in Fig. 49
to download a welcome message. The party accesses the server via

a standard authenticated channel (i.e., the party discloses its iden-

tity id). This is necessary for the server to identify which welcome

message to provide. The server either returns the welcome message

𝑤 designated to id or notifies that there is no welcome message.

Once the party receives the welcomemessage𝑤 ≠ ⊥, it processes𝑤
by invoking F ctxt

CGKA
on input (Join,𝑤). Finally, it setups the initial

state by calling *init-states function.

60

How to Hide MetaData in MLS-Like Secure Group Messaging:
Simple, Modular, and Post-Quantum CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

E.2 Making Membership Authentication
Protocol Non-Interactive

We discuss two simple ways to make the membership authentica-

tion protocol ran to publish and fetch the contents from the server

non-interactive.

Recall that when the group member tries to access the server,

they always engage in a membership authentication protocol to

prove anonymously to the server that they are indeed a valid group

member. Our𝑊mh
protocol realized this membership authenti-

cation protocol in an interactive challenge-response type manner

using a digital signature scheme. The server sends a challenge and

asks the group member to sign the challenge. Assuming that the

same challenge is never reused, this allowed the server to be con-

vinced that the communicating party indeed has a group signing

key.

We can remove this interaction between the server in some

scenarios by asking the server to perform an extra check on the

database. Namely, during the membership authentication protocol

run during the protocols PublishProposal and PublishCommit,
we allow the parties to sign on to the content they wish to upload to

the server, rather than being provided a challenge from the server.

For instance, in the protocol PublishProposal, the party id signs

the message (gid, epoch, p). The server checks if the signature is
valid with respect to the group signing key at (gid, epoch), and
additionally checks if such p is included in the proposal database

PropDB[gid, epoch]. If all check passes, it updates the database

with p. Notice that the server did not need to check if p was in the

database in the previous interactive protocol. This non-interactive

variant securely realizes the desired functionality since due to the

EUF-CMA security of the signature scheme, a non-group member

cannot upload any proposals that haven’t been signed. The only

possible attack would be to resend the observed signature-proposal

pair to the server. However, since the server is modified to never

accept the same proposal, this attack fails. The same idea can be

used to make the protocol PublishCommit non-interactive.
Unfortunately, it is not clear how tomake the protocols FetchProposals

and FetchCommit non-interactive using the above idea. This is be-

cause the party does not have any contents to sign when it is

performing a fetch/download. A potential idea is to weaken our

UC-security model to allow non-group members to fetch/download

the contents from the server, while still disallowing them to pub-

lish/upload any contents on the server. In particular, the protocols

FetchProposals and FetchCommit will simply consist of a party

querying the server (gid, epoch), and the server responding with

the proposals and commits on the database without checking mem-

bership. This seems like a reasonable compromise considering that

the contents uploaded on the server can be provided to an adversary

without compromising the security of the group— this follows since

the contents are commits and proposals generated from F ctxt
CGKA

,

which by definition secures the group secret key and static meta-

data. One possible issue is that without any authentication on the

fetch/download, it will allow an adversary to learn if a group with

the group identifier gid exists. Our interactive protocol does not

leak such information since it will output accept = false when

authentication fails.

In summary, by reasonably weakening the ideal functionality

Fmh
CGKA

in a meaningful way, we can make the wrapper protocol

𝑊mh
fully non-interactive. It remains an interesting future work

to investigate whether this weakening has any practical impact on

the protocol.

E.3 Security of the Wrapper Protocol𝑊 mh

The following theorem proves that the wrapper protocol𝑊mh
UC-

realizes the ideal functionality Fmh
CGKA

in the F ctxt
CGKA

-hybrid model.

Theorem E.1. Assuming that SIG′ is EUF-CMA secure, PRF is a
secure pseudorandom function, and PRP is a secure pseudorandom
permutation, the protocol𝑊mh UC-realizes the ideal functionality
Fmh
CGKA in the F ctxt

CGKA-hybrid model, where the safety predicates and
leakage functions for Fmh

CGKA are defined in Figs. 34, 35 and 50.

Proof. We consider the following sequence of hybrids. While

the environment Z interacts with𝑊mh
in Hybrid 1, it interacts

with the ideal functionality Fmh
CGKA

in Hybrid 6. Below, we first

define all the hybrids and then explain how the simulators are

defined.

Hybrid 1. This is the real-world execution of the protocol, where

we make a syntactic change. We consider a simulator S1 that
interacts with a dummy functionality Fdummy. Fdummy sits

between the environment Z and S1, and simply routs all

messages without any modification. S1 internally simulates

the real-world parties and adversary A by routing all the

messages sent from Fdummy; from A’s point of view, S1 is
the environmentZ.

Hybrid 2. In this hybrid, we replace the dummy functionality

Fdummy by the ideal functionality Fmh
CGKA

except that we

replace the functions used within Create, Propose, Commit,
Process, and Join by those defined in Figs. 51 to 54. We call

this modified ideal functionality Fmh
CGKA,2. In words, Fmh

CGKA,2
includes all the descriptions of the ideal functionality F ctxt

CGKA

for static metadata-hiding CGKA and outsources any other

checks performed by the wrapper protocol𝑊mh
to the simu-

lator S2. Namely, these correspond to the party-server inter-

action. In this hybrid, all consistency and security regarding

the static metadata are guaranteed. The description of S2 is
provided in Lem. E.2.

Hybrid 3. In this hybrid, we add all the missing consistency checks

regarding the wrapper protocol𝑊mh
of the ideal function-

ality Fmh
CGKA

into Fmh
CGKA,2. We cal this ideal functionality

Fmh
CGKA,3. More precisely, Fmh

CGKA,3 is identical to F
mh
CGKA

ex-

cept that random-index (resp. adv-access-allowed) always
returns false (resp. true). It only takes care of the correctness

guarantees and does not guarantee any security properties

regarding the dynamic metadata. Simulator S3 is defined

identically to S2.
Hybrid 4. In this hybrid, we change how the randomness used

to derive the permutation key and group signature key are

generated. The simulator S4 is identical to S3 except that,
rather than generating permKey ← PRF(kmh, ‘perm’) and
authKey← PRF(kmh, ‘auth’) (which occurs during Create
or Commit), if safe is true for that epoch, then it samples

61

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Keitaro Hashimoto, Shuichi Katsumata, and Thomas Prest

a random permKey and authKey. In this hybrid, we use

FCGKA,4 := FCGKA,3.
Hybrid 5. In this hybrid, we add the missing security guarantee

on the randomness of the party’s index. Namely, we modify

Fmh
CGKA,4 to use the original random-index predicate, de-

noted as Fmh
CGKA,5. F

mh
CGKA,5 permutes the indices with a ran-

dom permutation if predicate random-index is true. Simu-

lator S5 is identical to S4.
Hybrid 6. In this hybrid, we add the missing security guaran-

tee when an adversary tries to access the honest server.

Namely, we modify Fmh
CGKA,5 to use the original predicate

adv-access-allowed, denoted as Fmh
CGKA,6. F

mh
CGKA,6 halts if

an adversary succeeds to fetch or publish a proposal or

commit message without knowing the corresponding group

secret key. Simulator S6 is identical to S5. At this point,
Fmh
CGKA,6 is identical to the ideal functionality Fmh

CGKA
.

We show indistinguishability of Hybrids 1 to 6 in Lems. E.2 to E.4,

E.6 and E.8. This completes the proof of the main theorem. □

E.3.1 From Hybrid 1 to 2: Lem. E.2.

Lemma E.2. Hybrid 1 and Hybrid 2 are perfectly indistinguishable.

Proof. We first provide the description of S2. Whenever S2 is
invoked on an input from F ctxt

CGKA
called within Fmh

CGKA,2
,
41

it simply

relays the same input to the adversaryA. Since𝑊mh
is constructed

in the F ctxt
CGKA

-hybrid model, these inputs are exactly what A was

provided in Hybrid 1. S2 returns to F ctxt
CGKA

whatever provided by

A. It remains to describe how S2 answers RegisterGroup, and
publish and fetch queries sent from Fmh

CGKA,2
. To this end, we first

make a detour and explain how kmh is set in Hybrids 1 and 2.

In Hybrid 1, kmh for a commit node node-id is created when

S1 invokes some party id with Ptr[id] = node-id on a Create or

a Commit. When id queries Create, id performs a query Keymh to
F ctxt
CGKA

within *init-states; when id queries Commit, id performs

a query NextKeymh within PublishCommit. If safe(node-id) = true,
then F ctxt

CGKA
samples a random key kmh. Otherwise, F ctxt

CGKA
asks

A to provide the key. These are the only two places where a

new kmh is set — Keymh and NextKeymh are also queried during

Propose, Process, and Join but kmh will already be defined.

In Hybrid 2, however, S2 can no longer directly invoke a party

id when the static metadata is hidden. For example, when Z in-

vokes party idcreator on a Create while *leak-create is activated
(i.e., the predicate safe is true), then S2 is only provided with

(|idcreator |, |svk|) from Fmh
CGKA,2

. Without knowing idcreator, S2 can-
not invoke idcreator to execute *init-states. This in particular

means that it cannot set kmh like S1 did above by invoking Keymh
or NextKeymh of F ctxt

CGKA
.

With this in mind, we now finish the description of S2. S2 main-

tains a list 𝐿kmh to store the key kmh generated at node node-id,
i.e., 𝐿kmh [node-id] = kmh. Notice that when S2 needs to sim-

ulate a RegisterGroup, or a fetch or publish query, it is given

either (gid, epoch) if the server Sv is honest and Ptr[id] if Sv is

41
Note that this is not strictly true since Fctxt

CGKA
is not defined within Fmh

CGKA,2
. Fmh

CGKA,2

merely has most of the codes included in Fctxt
CGKA

. We use this informal wording for

simplicity.

malicious. Since there is no fork in the group when Sv is honest,
(gid, epoch) uniquely defines node-id. Notably, even if S2 does not
know who the calling party id is, it knows which group and epoch

(or Ptr[id] in case of a fork) id is included in, and thus, knows which
kmh = 𝐿kmh [node-id] to use if it exists.

As explained above, when Z invokes some party to perform

Propose, Process, or Join, kmh is already defined. Thus,S2 simply

uses kmh = 𝐿kmh [node-id] to perform the same simulation as S1,
where recall id is not used during a publish or fetch protocol. When

the environmentZ invokes idcreator on (Create, svk), this is when
a new kmh is generated, i.e., 𝐿kmh [Ptr[idcreator]] is still undefined.
S2 checks if safe(0) = false — which it can do since it can simu-

late an identical semantics of the history graph maintained within

Fmh
CGKA,2 — and asks A for kmh. This is identical to what S1 did.

Otherwise, S2 samples a random kmh on its own. In either case, S2
stores 𝐿kmh [0] ← kmh and uses kmh to perform the RegisterGroup
protocol. The only difference between the previous hybrid is thatS2
samples kmh when safe(0) = true, rather than letting F ctxt

CGKA
sam-

pling it. However, since *mark-next-db-initialized-epoch(0)
is called and due to the restriction on A, A cannot compromise

kmh after Create was invoked. Therefore, from the view of Z,

kmh is distributed identically in both hybrids. Thus, the simulation

of Create is perfectly indistinguishable from Hybrid 1. The case

when the environment Z invokes id on (Commit, svk) is proven
analogously to (Create, svk). This completes the proof. □

E.3.2 From Hybrid 2 to 3: Lem. E.3.

Lemma E.3. Hybrid 2 and Hybrid 3 are indistinguishable assuming
the correctness of SIG′.

Proof. The only difference between Hybrids 2 and 3 is that

Fmh
CGKA,3

in Hybrid 3 mandates correctness of the RegisterGroup,

and publish and fetch protocols when the server Sv is honest. For
instance, in Hybrid 2, during the PublishProposal protocol, S2
simulated the interaction between the party id and the honest

Sv using the key kmh stored in the list 𝐿kmh . S2 then returned

accept′ output by Sv to Fmh
CGKA,2

, and in particular, this notified

the environment Z that S output accept′. In particular, Fmh
CGKA,2

did not model any notion of correctness of the PublishProposal
protocol.

On the other hand, inHybrid 3, ifComDB[gid, epoch] = (⊤, node-id)
and node-id = Ptr[id] (i.e., the group statement gvk is created

honestly and id holds the corresponding signing key gsk), then
Fmh
CGKA,3

always sends accept = true to Z. This models the fact

that if the new epoch (node-id) is initialized by an honest party, then
any member assigned on the same commit node (i.e., node-id =

Ptr[id]) can upload a proposal. It is clear that this holds assum-

ing that SIG′ is correct, i.e., a properly generated signature is al-

ways accepted. Fmh
CGKA,3

always sends accept = false to Z if (1)

ComDB[gid, epoch] ≠ (⊤, node-id) or (2) ComDB[gid, epoch] =
(⊤, node-id) and node-id ≠ Ptr[id]. For case (1), we can verify that

the real server performs the same check as ComDB[gid, epoch] is
equal to (gvk,⊥,⊥) or not, and thus S2 returned accept′ = false.
For case (2), if S2 returned accept′ = true in case (2), we can

construct an adversary that breaks the EUF-CMA security of SIG′

by using such S2. Thus S2 returned accept′ = false assuming

62

How to Hide MetaData in MLS-Like Secure Group Messaging:
Simple, Modular, and Post-Quantum CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

the EUF-CMA security of SIG′. Therefore, the view to Z remain

identical.

All other RegisterGroup, and publish and fetch protocols in

Hybrid 3 can be checked to behave identically to those of Hybrid 2

conditioned on SIG′ being correct and EUF-CMA secure. □

E.3.3 From Hybrid 3 to 4: Lem. E.4.

Lemma E.4. Hybrid 3 and Hybrid 4 are indistinguishable assuming
PRF is a secure pseudorandom function.

Proof. We assume Z creates at most Q epochs (i.e., commit

nodes node-id in the history graph). To show Lem. E.4, we consider

the following sub-hybrids between Hybrid 3 and Hybrid 4.

Hybrid 3-0 := Hybrid 3. This is identical to Hybrid 3. We use the

functionality FCGKA,3, and the simulator S3-0 := S3. When

simulating protocol, S3-0 uses the group key kmh stored in

the list 𝐿kmh as PRF key.

Hybrid 3-𝑖. 𝑖 runs through [Q]. The simulator S3-𝑖 is defined ex-

actly as S
3-(𝑖−1) except that when S3-(𝑖−1) generates a ran-

dom kmh for the 𝑖-th epoch where safe is true, it chooses

a random authKey and permKey instead of deriving them

from PRF and kmh. Note that we count epochs (i.e., node-id)
in the order in which Create or Commit is invoked. We show

in Lem. E.5 that Hybrid 3-(𝑖 − 1) and Hybrid 3-𝑖 are indistin-

guishable.

Hybrid 3-Q := Hybrid 4. In this hybrid, all authKey and permKey
generated at epochs such that safe is true are chosen at ran-

dom.

The indistinguishability between Hybrid 3 and Hybrid 4 is estab-

lished by applying the following Lem. E.5 for all 𝑖 ∈ [Q].

Lemma E.5. Hybrid 3-(𝑖 − 1) and Hybrid 3-𝑖 are indistinguishable
assuming PRF is a secure pseudo-random function.

Proof. The difference between Hybrid 3-(𝑖 − 1) and Hybrid 3-𝑖

is whether authKey and permKey at the 𝑖-th epoch (i.e., node-id)
are chosen uniformly at random if safe is true. (If safe is false

for the 𝑖-th epoch, two hybrids proceed identically.) Due to the

modification we made in Hybrid 2, the group key kmh is chosen

uniformly at random. Moreover, due to the restriction on the ad-

versary, kmh generated when safe was true cannot be corrupted
by the adversary. Thus, by the pseudorandomness of the PRF, the
output of the PRF is indistinguishable from a random string for the

input labels ‘perm’ and ‘auth’. This implies Hybrid 3-(𝑖 − 1) and
Hybrid 3-𝑖 are indistinguishable. More formally, if Z can distin-

guish the two hybrids, then there exists an adversary B that breaks

the pseudorandomness of the PRF. We first explain the description

of B; then we evaluate B’s advantage.
B simulates forZ the protocol executions between a party and

the server as in S
3-(𝑖−1) , except for the evaluation of the PRF. To

generate authKey and permKey, B queries authKey := F (‘auth’)
and permKey := F (‘perm’) to its oracle F .

We evaluate the success probability of B. If the oracle F evalu-

ates a pseudo-random function, thenZ’s view is identical to Hybrid

3-(𝑖 − 1). If F evaluates a truly random function, thenZ’s view is

identical to Hybrid 3-𝑖 . Hence, ifZ distinguishes Hybrid 3-(𝑖 − 1)
and Hybrid 3-𝑖 with non-negligible probability, B breaks the pseu-

dorandomness of the PRF with non-negligible probability. This

contradicts the assumption that PRF is secure. Therefore, Hybrid
3-(𝑖 − 1) and Hybrid 3-𝑖 are indistinguishable. □

□

E.3.4 From Hybrid 4 to 5: Lem. E.6. Hybrid 5 concerns the random-

ness of the access indix of group members. If random-index is

true, then the ideal functionality Fmh
CGKA,5 randomizes the commit

vector ®c and the index of each party in the group on behalf of the

simulator. We prove in Lem. E.6 that assuming that PRP is secure,

Hybrid 4 and Hybrid 5 are indistinguishable.

Lemma E.6. Hybrid 4 and Hybrid 5 are indistinguishable assuming
PRP is a secure pseudorandom permutation.

Proof. We assume Z creates at most Q epochs (i.e., commit

nodes node-id in the history graph). To show Lem. E.6, we consider

the following sub-hybrids between Hybrid 4 and Hybrid 5.

Hybrid 4-0 := Hybrid 4. This is identical to Hybrid 4. We use the

functionality FCGKA,4, and the simulator S4-0 := S4. In this

hybrid, FCGKA,4 permutes the indices index and commit vec-

tors ®c with a permutation chosen by S4-0, and S4-0 simulates

the PublishCommit and FetchCommit protocols using the

indices and commit messages provided from FCGKA,4-𝑖 .
Hybrid 4-𝑖. 𝑖 runs through [Q]. We use the functionalityFCGKA,4-𝑖

which is defined exactly as FCGKA,4-(𝑖−1) except that the
indices index and commit vectors ®c are permutated with a

truly random permutation if random-index is true for the

𝑖-th epoch. The simulator S4-𝑖 is defined exactly as S
4-(𝑖−1) .

Note that we count epochs (i.e., node-id) in the order in

which Create or Commit is invoked. We show in Lem. E.7

that Hybrid 4-(𝑖 − 1) and Hybrid 4-𝑖 are indistinguishable.

Hybrid 4-Q := Hybrid 5. Weuse the functionalityFCGKA,4-Q which

permutes the indices index and commit vectors ®c with a ran-

dom permutation for all epochs where random-index is

true. FCGKA,4-Q is identical to FCGKA,5.
Indistinguishability between Hybrid 4 and Hybrid 5 is established

by applying the following Lem. E.7 for all 𝑖 ∈ [Q].

Lemma E.7. Hybrid 4-(𝑖 − 1) and Hybrid 4-𝑖 are indistinguishable
assuming PRP is a secure pseudorandom permutation.

Proof. The difference between Hybrid 4-(𝑖−1) and Hybrid 4-𝑖 is
whether index and ®c issued at the 𝑖-th epoch where random-index
is true are permuted by a truly randompermutation. (If random-index
is false for the 𝑖-th epoch, two hybrids proceed identically.) Due to

the modification we made in Hybrid 4, the 𝑖-th permutation key

permKey is chosen uniformly at random if random-index (=safe)
is true. Thus, by the pseudorandomness of the PRP, the output of the
PRP is indistinguishable from that of a truly random permutation.

This implies Hybrid 4-(𝑖 − 1) and Hybrid 4-𝑖 are indistinguishable.

More formally, ifZ can distinguish the two hybrids, then we can

construct an adversary B that breaks the pseudorandomness of the

PRP. We first explain the description of B; then we evaluate B’s
advantage.

B simulates forZ the protocol executions between a party and

the server as in S
4-(𝑖−1) , except for the evaluation of PRP at the

𝑖-th epoch. Rather than sampling a permutation key permKey for

63

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Keitaro Hashimoto, Shuichi Katsumata, and Thomas Prest

the 𝑖-th epoch to evaluate the permutation, B queries its challenge

oracle to compute index′ ← P(index).
We evaluate the success probability ofB. If the oracleP evaluates

a pseudorandom permutation, thenZ’s view is identical to Hybrid

4-(𝑖 − 1). Otherwise, if P evaluates a truly random permutation,

thenZ’s view is identical to Hybrid 4-𝑖 . Hence, ifZ distinguishes

Hybrid 4-(𝑖 − 1) and Hybrid 4-𝑖 with non-negligible probability,

B breaks the pseudorandomness of the PRP with non-negligible

probability. This contradicts the assumption that PRP is secure.

Therefore, Hybrid 4-(𝑖−1) and Hybrid 4-𝑖 are indistinguishable. □

□

E.3.5 From Hybrid 5 to 6: Lem. E.8. Hybrid 6 concerns the group

membership check performed by the honest server.When the server

is honest (i.e., ServerStat = ‘good’) and adv-access-allowed is

false (i.e., group secrets are not compromised), the functionality

Fmh
CGKA,6 halts if an adversary succeeds to publish or fetch a proposal

or commit messages. That is an adversary that does not know the

group secret should not be able to publish or fetch contents from

the honest server. We prove in Lem. E.8 that ifZ can distinguish

the two hybrids, then we can construct an adversary that breaks

the EUF-CMA security of SIG′. In other words, assuming that SIG’
is EUF-CMA secure, Hybrid 5 and Hybrid 6 are indistinguishable.

Concretely, we show the following.

Lemma E.8. Hybrid 5 and Hybrid 6 are indistinguishable assuming
SIG′ is EUF-CMA secure.

Proof. We show that, ifZ can distinguish the two hybrids, then

there exists an adversary B that breaks the EUF-CMA security of

SIG′. We first explain the description of B and how B extracts a

valid signature forgery usingZ; we then show the validity of the

forged signature and finally evaluate B’s advantage.
B simulates forZ the protocol executions between a party and

the server as in S6, except for the signature generation during

the publish and fetch protocols. At the beginning of the game, B
chooses an index 𝑖 ∈ [Q] at random, where Q is the total number

of epochs (i.e., commit nodes node-id) that Z creates. B aborts

if adv-access-allowed is true for the 𝑖-th epoch, and otherwise

embeds the challenge signing key svk∗ in the 𝑖-th group signing

key gvk. Here, if adv-access-allowed is false (i.e, safe is true) for
the 𝑖-th epoch, the group signing key is generated with a uniformly

random authKey due to the modification we made in Hybrid 4.

Therefore,B perfectly simulates svk∗ as in Hybrid 5. Moreover, note

that once safe is true, the restricted adversary cannot compromise

the 𝑖-th group signing key. Whenever an honest party at the 𝑖-th

epoch publishes or fetches proposal/commit messages, B uses the

signing oracle to sign the challenge message sent from the server.

For the other epochs, B generates gvk and signs as in the previous

hybrid. If the adversary succeeds in making the server accept at

execution of a publish and fetch proposal/commit protocols in the

𝑖-th epoch, B retrieves the pair of challenge message and response

signature (ch, 𝜎) from the successful transcript, and submits (ch, 𝜎)
as the forgery.

Let us analyze the success probability of B. First, by noticing the
only way thatZ can distinguish the two hybrids is by triggering

the assert condition on adv-access-allowed, there must exist at

least one epoch for which the adversary succeeds in the protocol

PublishProposalAdv, where adv-access-allowed is false. Since

the choice 𝑖 ←$ [Q] of B is information-theoretically hidden from

Z and the adversary, the guess made by B is correct with probabil-

ity at least 1/Q. Conditioning on the guess being correct, (ch, 𝜎) is a
valid message and signature pair for gvk. Moreover, since the server

is honest and the challenge message space is exponentially large,

the server never picks the same challenge message ch. Therefore,
(ch, 𝜎) is a pair of message and signature that B did not query to

the signing oracle and constitutes a valid forgery. In summary, if

Z distinguishes the two hybrids with non-negligible probability 𝜖 ,

B wins the game with probability at least 𝜖/Q, which is also non-

negligible. This contradicts the assumption that SIG′ is EUF-CMA
secure. Thus, Hybrid 5 and Hybrid 6 are indistinguishable. □

64

How to Hide MetaData in MLS-Like Secure Group Messaging:
Simple, Modular, and Post-Quantum CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

Input (Create, svk)
1 : req G = ⊥
2 : try query (Create, svk) to Fctxt

CGKA

3 : G ← *init-states(gid, 0, { (idcreator, svk) })
4 : req RegisterGroup(gid, 0)

Input (Propose, act), act ∈ { ‘upd’-svk, ‘add’-id𝑡 -kp𝑡 , ‘rem’-id𝑡 }
1 : req G ≠ ⊥
2 : try p← query (Propose, act) to Fctxt

CGKA

3 : req PublishProposal(G.gid,G.epoch, p)
4 : return p

Input (Commit, svk)
1 : req G ≠ ⊥
2 : (accept, ®p) ← FetchProposals(G.gid,G.epoch)
3 : req accept

4 : try (c0, ®c, ®𝑤) ← query (Commit, svk, ®p) to Fctxt
CGKA

5 : ®cperm ← *permute-commit(G, ®c)
6 : try PublishCommit(G.gid,G.epoch, c0, ®cperm)
7 : foreach 𝑤 ∈ ®𝑤 do

8 : parse (id𝑡 , ∗) ← 𝑤

9 : try PublishWelcome(id𝑡 , 𝑤)
10 : return (c0, ®cperm, ®𝑤)

Input Process

1 : req G ≠ ⊥
2 : index̂c ← *permuted-commit-index(G, id)
3 : try (c0, ĉ, ®p) ← FetchCommit(G.gid,G.epoch, index̂c)
4 : try (id𝑐 , propSem,mem) ← query (Process, c0, ĉ, ®p) to FctxtCGKA

5 : G′ ← *update-states(G,mem)
6 : return (id𝑐 , propSem,mem)

Input (Key)
1 : req G ≠ ⊥
2 : try k← query (Key) to Fctxt

CGKA

3 : return k

Input Join

1 : req G = ⊥
2 : try 𝑤 ← FetchWelcome(id)
3 : try (id𝑐 , gid, epoch,mem) ← query (Join, 𝑤) to Fctxt

CGKA

4 : G ← *init-states(gid, epoch,mem)
5 : return (id𝑐 , gid, epoch,mem)

*init-states(gid, epoch,mem)
1 : G.gid← gid;G.epoch← epoch;G.mem← mem

2 : kmh ← query Keymh to FctxtCGKA

3 : G.permKey← PRF(kmh, ‘perm’)
4 : authKey← PRF(kmh, ‘auth’)
5 : (G.gvk,G.gsk) ← SIG′ .KeyGen(ppSIG′ ; authKey)
6 : return G

*update-states(G,mem)
1 : G′ .gid← G.gid;G′ .epoch← G.epoch + 1
2 : G′ .mem← mem

3 : kmh ← query Keymh to FctxtCGKA

4 : G′ .permKey← PRF(kmh, ‘perm’)
5 : authKey← PRF(kmh, ‘auth’)
6 : (G′ .gvk,G′ .gsk) ← SIG′ .KeyGen(ppSIG′ ; authKey)
7 : return G′

*permute-commit(G, ®c)
1 : ®cperm ← ()
2 : for index = 1, . . . , |®c | do
3 : ®cperm ++← ®c[PRP(G.permKey, index)]
4 : return ®cperm

*permuted-commit-index(G, id)
1 : index← G.indexOf (id)
2 : return PRP(G.permKey, index)

Figure 42: Metadata-hiding CGKA protocol𝑊mh in the F ctxt
CGKA-hybrid model: Create, Propose, Commit, Process, Join, Key, and

some helper functions.

65

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Keitaro Hashimoto, Shuichi Katsumata, and Thomas Prest

Subroutine RegisterGroup(gid, 0)
Party id Server Sv

gvk← G.gvk (‘anon’,⊥, Sv), RegisterGroup, gid, 0, gvk if ComDB[gid, ∗] = ⊥ then
ComDB[gid, 0] ← (gvk,⊥,⊥)
accept ← true

else
accept ← false

return (accept, gid, 0)

return accept accept

Figure 43: Subroutines for metadata-hiding CGKA protocol𝑊mh in the F ctxt
CGKA-hybrid model: Register a new group and initialize

group states for the current epoch. Party id and the server Sv are connected via a client-anonymized authenticated channel.

Subroutine PublishProposal(gid, epoch, p)
Party id Server Sv

(‘anon’,⊥, Sv), PublishProposal

ch ch←$ {0, 1}𝜅

(gid, epoch) ← (G.gid,G.epoch)
𝜎 ← SIG′ .Sign(ppSIG′ ,G.gsk, ch)

𝜎, gid, epoch, p if ComDB[gid, epoch] = (gvk,⊥,⊥)
∧ SIG′ .Verify(ppSIG′ , gvk, 𝜎, ch) then

PropDB[gid, epoch] ++← p
accept ← true

else
accept ← false

return (accept, gid, epoch, p)

return accept accept

Figure 44: Subroutines for metadata-hiding CGKA protocol𝑊mh in the F ctxt
CGKA-hybrid model: Publish proposal messages. Party

id and the server Sv are connected via a client-anonymized authenticated channel.

Subroutine FetchProposals(gid, epoch)
Party id Server Sv

(‘anon’,⊥, Sv), FetchProposals

ch ch←$ {0, 1}𝜅

𝜎 ← SIG′ .Sign(ppSIG,G.gsk, ch) 𝜎, gid, epoch if ComDB[gid, epoch] = (gvk,⊥,⊥)
∧ SIG′ .Verify(ppSIG′ , gvk, 𝜎, ch) = ⊤ then

(accept, ®p) ← (true, PropDB[gid, epoch])
else

(accept, ®p) ← (false,⊥)
return (accept, gid, epoch)

return (accept, ®p) accept, ®p

Figure 45: Subroutines for metadata-hiding CGKA protocol𝑊mh in the F ctxt
CGKA-hybrid model: Fetch proposal messages. Party id

and the server Sv are connected via a client-anonymized authenticated channel.

66

How to Hide MetaData in MLS-Like Secure Group Messaging:
Simple, Modular, and Post-Quantum CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

Subroutine PublishCommit(gid, epoch, c0, ®c)
Party id Server Sv

(‘anon’,⊥, Sv), PublishCommit

ch ch←$ {0, 1}𝜅

(gid, epoch) ← (G.gid,G.epoch)
𝜎 ← SIG′ .Sign(ppSIG′ ,G.gsk, ch)
// Generate the next epoch’s group statement.

kmh
′ ← query (NextKeymh, c0) to FctxtCGKA

authKey′ ← PRF(kmh
′, ‘auth’)

(gvk′, gsk′) ← SIG′ .KeyGen(ppSIG′ ; authKey′)

𝜎, gid, epoch, gvk′, c0, ®cperm if ComDB[gid, epoch] = (gvk,⊥,⊥)
∧ SIG′ .Verify(ppSIG′ , gvk, 𝜎, ch) = ⊤ then

ComDB[gid, epoch] ← (gvk, c0, ®cperm)
ComDB[gid, epoch + 1] ← (gvk′,⊥,⊥)
accept ← true

else
accept ← false

return (accept, gid, epoch, c0, ®cperm)

return accept accept

Figure 46: Subroutines for metadata-hiding CGKA protocol𝑊mh in the F ctxt
CGKA-hybrid model: Publish commit messages. Party

id and the server Sv are connected via a client-anonymized authenticated channel.

Subroutine FetchCommit(gid, epoch, index)
Party id Server Sv

(‘anon’,⊥, Sv), FetchCommit

ch ch←$ {0, 1}𝜅

𝜎 ← SIG′ .Sign(ppSIG′ ,G.gsk, ch) 𝜎, gid, epoch, index if ComDB[gid, epoch] = (gvk, c0, ®cperm)
∧ SIG′ .Verify(ppSIG′ , gvk, 𝜎, ch) = ⊤ then

(accept, ®p) ← (true, PropDB[gid, epoch])
ĉ ← ®cperm [index]

else

(accept, c0, ĉ, ®p) ← (false,⊥,⊥,⊥)
return (accept, gid, epoch, index)

return (accept, c0, ĉ, ®p) accept, c0, ĉ, ®p

Figure 47: Subroutines for metadata-hiding CGKA protocol𝑊mh in the F ctxt
CGKA-hybrid model: Fetch commit messages. Party id

and the server Sv are connected via a client-anonymized authenticated channel.

Subroutine PublishWelcome(id𝑡 ,𝑤)
Party id Server Sv

(‘anon’,⊥, Sv), PublishWelcome, id𝑡 , 𝑤 WelDB[id𝑡] ← 𝑤

accept ← true

return (accept, id𝑡 , 𝑤)

return accept accept

Figure 48: Subroutines for metadata-hiding CGKA protocol𝑊mh in the F ctxt
CGKA-hybrid model: Publish and fetch welcome

messages. Party id and the server Sv are connected via a client-anonymized authenticated channel.

67

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Keitaro Hashimoto, Shuichi Katsumata, and Thomas Prest

Subroutine FetchWelcome(id)
Party id Server Sv

(‘auth’, id, Sv), FetchWelcome if WelDB[id] = ⊥ then

(accept, 𝑤) ← (false,⊥)
else

(accept, 𝑤) ← (true,WelDB[id])
return (accept, id)

return (accept, 𝑤) accept, 𝑤

Figure 49: Subroutines for metadata-hiding CGKA protocol𝑊mh in the F ctxt
CGKA-hybrid model: Fetch welcome messages. Party id

and the server Sv are connected via an authenticated channel. Note that the channel does not need to be anonymized.

Random index and group authentication.

random-index(c) ⇐⇒ safe(c)
adv-access-allowed(c) ⇐⇒ ¬safe(c)

Figure 50: Additional safety predicates unique to the wrapper protocol𝑊mh. The other safety predicates used to implicitly
define the underlying ideal functionality F ctxt

CGKA are identical to those provided in App. C.2.

68

How to Hide MetaData in MLS-Like Secure Group Messaging:
Simple, Modular, and Post-Quantum CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

Subroutine RegisterGroup(gid, epoch)
1 : channelType← (‘anon’,⊥, Sv) // Connect to the server via anonymous channel

2 : req epoch = 0

3 : Send (channelType, RegisterGroup, gid, 0) to S and receive accept

4 : if ServerStat = ‘good’ then

5 : Send (accept, gid, 0) to Sv

6 : return accept

Subroutine PublishProposal(gid, epoch, p)
1 : channelType← (‘anon’,⊥, Sv) // Connect to the server via anonymous channel

2 : if ServerStat = ‘good’ then

3 : Send (channelType, PublishProposal, gid, epoch, p) to S and

4 : receive accept

5 : Send (accept, gid, epoch, p) to Sv

6 : else

7 : Send (channelType, PublishProposal, Ptr[id], p) to S and

8 : receive accept

9 : return accept

Subroutine FetchProposals(gid, epoch)
1 : channelType← (‘anon’,⊥, Sv) // Connect to the server via anonymous channel

2 : if ServerStat = ‘good’ then

3 : Send (channelType, FetchProposals, gid, epoch) to S and

4 : receive (accept, ®p)
5 : Send (accept, gid, epoch) to Sv

6 : else

7 : Send (channelType, FetchProposals, Ptr[id]) to S and

8 : receive (accept, ®p)
9 : return (accept, ®p)
10 :

Subroutine PublishCommit(gid, epoch, c0, ®cperm)
1 : channelType← (‘anon’,⊥, Sv) // Connect to the server via anonymous channel

2 : if ServerStat = ‘good’ then

3 : Send (channelType, PublishCommit, gid, epoch, c0, ®cperm) to S and

4 : receive accept

5 : Send (accept, gid, epoch, c0, ®cperm) to Sv

6 : else

7 : Send (channelType, PublishCommit, Ptr[id], c0, ®cperm) to S and

8 : receive accept

9 : return accept

Subroutine FetchCommit(gid, epoch, index̂c)
1 : channelType← (‘anon’,⊥, Sv) // Connect to the server via anonymous channel

2 : if ServerStat = ‘good’ then

3 : Send (channelType, FetchCommit, gid, epoch, index̂c) to S and

4 : receive (accept, c0, ĉ, ®p)
5 : Send (accept, gid, epoch, index̂c) to Sv

6 : else

7 : Send (channelType, FetchCommit, Ptr[id], index̂c) to S and

8 : receive (accept, c0, ĉ, ®p)
9 : return (accept, c0, ĉ, ®p)

Figure 51: Subroutines for publish and fetch proposal and commit messages used in Hybrid 2.

Input from a party id or adversary S
Input PublishWelcome(id𝑡 ,𝑤)
1 : // Connect to the server via anonymous channel

2 : channelType← (‘anon’,⊥, Sv)
3 : Send (channelType, PublishWelcome, id𝑡 , 𝑤) to S and

4 : receive accept

5 : if ServerStat = ‘good’ then

6 : Send (accept, id𝑡 , 𝑤) to Sv

7 : return accept

Input FetchWelcome(id)
1 : // Connect to the server via authenticated channel

2 : channelType← (‘auth’, id, Sv)
3 : Send (channelType, FetchWelcome) to S and receive (accept, 𝑤)
4 : if ServerStat = ‘good’ then

5 : Send (accept, id) to Sv

6 : return (accept, 𝑤)

Figure 52: Subroutines for publish and fetch welcome messages used in Hybrid 2.

69

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Keitaro Hashimoto, Shuichi Katsumata, and Thomas Prest

*permuted-commit-index(node-id, id)
1 : assert Node[node-id] ≠ ⊥
2 : // If flagselDL is false, there is no need to permute index.

3 : if ¬flagselDL then
4 : return ⊥
5 : mem← Node[node-id] .mem

6 : assert id ∈ mem

7 : Send (*permuted-commit-index, Ptr[id], id) to S and receive index̂c
8 : return index̂c

*permute-commit(node-id, ®c)
1 : assert Node[node-id] ≠ ⊥
2 : // If flagselDL is false, no party-dependent commitment can exist.

3 : if ¬flagselDL then
4 : assert ®c = ⊥
5 : return ⊥
6 : Send (*permute-commit, Ptr[id], ®c) to S and receive ®cperm
7 : return ®cperm

Figure 53: Helper functions: permute functions used in Hybrid 2.

Input from the adversary S
Input (PublishProposalAdv, gid, epoch, p)
1 : channelType← (‘anon’,⊥, Sv)
2 : Send (channelType, PublishProposalAdv, gid, epoch, p) to S and

receive accept

3 : if ServerStat = ‘good’ then

4 : Send (channelType, PublishProposal, (accept, gid, epoch, p)) to Sv

5 : return accept

Input (FetchProposalsAdv, gid, epoch)
1 : channelType← (‘anon’,⊥, Sv)
2 : Send (channelType, FetchProposalsAdv, gid, epoch) to S and

receive (accept, ®p)
3 : if ServerStat = ‘good’ then

4 : return (accept, ®p)

Input (PublishCommitAdv, gid, epoch, c0, ®c)
1 : channelType← (‘anon’,⊥, Sv)
2 : Send (channelType, PublishCommitAdv, gid, epoch, c0, ®c) to S and

receive accept

3 : if ServerStat = ‘good’ then

4 : return accept

Input (FetchCommitAdv, gid, epoch, index)
1 : channelType← (‘anon’,⊥, Sv)
2 : Send (channelType, FetchCommitAdv, gid, epoch, index) to S and

receive (accept, c0, ĉ, ®p)
3 : if ServerStat = ‘good’ then

4 : return (accept, c0, ĉ, ®p)

Figure 54: Publish functions used by the adversary in Hybrid 2.

70

How to Hide MetaData in MLS-Like Secure Group Messaging:
Simple, Modular, and Post-Quantum CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

Contents

Abstract 1

1 Introduction 1

1.1 Goal of This Work 2

1.2 Our Contributions 3

2 Background 4

2.1 Syntax of CGKA 4

2.2 Default UC Security Model of CGKA 4

3 Hiding Static Metadata in CGKA 5

3.1 UC Security Model for Static Metadata 5

3.2 Proof of Static Metadata-Hiding CGKA 6

4 Constructing Metadata-Hiding CGKA 7

4.1 Goal of the Wrapper Protocol𝑊mh
7

4.2 High Level Description of𝑊mh
7

5 Formal Model for Metadata-Hiding CGKA 9

5.1 Modeling an Honest but Curious Sever 9

5.2 UC Security Model for Dynamic Metadata 9

5.3 Proof of Dynamic Metadata-Hiding CGKA 10

6 Instantiation and Efficiency 10

6.1 Instantiation 10

6.2 Efficiency 11

7 Limitation of Efficient Metadata-Hiding CGKA 11

7.1 Chained CmPKE and TreeKEM 11

7.2 Server-Aided Variants of TreeKEM 12

References 13

A Definition of General Cryptographic Primitives 14

A.1 Notation 14

A.2 Decomposable Multi-Recipient Public Key

Encryption 15

A.3 Secret Key Encryption 15

A.4 Digital Signatures 16

A.5 Message Authentication Codes 16

A.6 HKDF 16

A.7 Pseudorandom Function 16

A.8 Pseudorandom Permutation 16

B Static Metadata-Hiding CGKA: Definition 17

B.1 Background 17

B.2 UC Security Model and F ctxt
CGKA

19

C Static Metadata-Hiding CGKA: Construction and

Security Proof 29

C.1 Constructing Chained CmPKEctxt 29

C.2 Safety Predicates and Leakage Functions 37

C.3 Security of Chained CmPKEctxt 40

D Metadata-Hiding CGKA: Definition 49

D.1 An Overview of Fmh
CGKA

50

D.2 Functions Used by Legitimate Parties 50

D.3 Functions Used by the Adversary 53

E Metadata-Hiding CGKA: Construction and Security

Proof 59

E.1 Constructing the Wrapper Protocol𝑊mh
59

E.2 Making Membership Authentication Protocol

Non-Interactive 61

E.3 Security of the Wrapper Protocol𝑊mh
61

Contents 71

71

	Abstract
	1 Introduction
	1.1 Goal of This Work
	1.2 Our Contributions

	2 Background
	2.1 Syntax of CGKA
	2.2 Default UC Security Model of CGKA

	3 Hiding Static Metadata in CGKA
	3.1 UC Security Model for Static Metadata
	3.2 Proof of Static Metadata-Hiding CGKA

	4 Constructing Metadata-Hiding CGKA
	4.1 Goal of the Wrapper Protocol Wmh
	4.2 High Level Description of Wmh

	5 Formal Model for Metadata-Hiding CGKA
	5.1 Modeling an Honest but Curious Sever
	5.2 UC Security Model for Dynamic Metadata
	5.3 Proof of Dynamic Metadata-Hiding CGKA

	6 Instantiation and Efficiency
	6.1 Instantiation
	6.2 Efficiency

	7 Limitation of Efficient Metadata-Hiding CGKA
	7.1 Chained CmPKE and TreeKEM
	7.2 Server-Aided Variants of TreeKEM

	References
	A Definition of General Cryptographic Primitives
	A.1 Notation
	A.2 Decomposable Multi-Recipient Public Key Encryption
	A.3 Secret Key Encryption
	A.4 Digital Signatures
	A.5 Message Authentication Codes
	A.6 HKDF
	A.7 Pseudorandom Function
	A.8 Pseudorandom Permutation

	B Static Metadata-Hiding CGKA: Definition
	B.1 Background
	B.2 UC Security Model and FCGKActxt

	C Static Metadata-Hiding CGKA: Construction and Security Proof
	C.1 Constructing Chained CmPKEctxt
	C.2 Safety Predicates and Leakage Functions
	C.3 Security of Chained CmPKEctxt

	D Metadata-Hiding CGKA: Definition
	D.1 An Overview of FCGKAmh
	D.2 Functions Used by Legitimate Parties
	D.3 Functions Used by the Adversary

	E Metadata-Hiding CGKA: Construction and Security Proof
	E.1 Constructing the Wrapper Protocol Wmh
	E.2 Making Membership Authentication Protocol Non-Interactive
	E.3 Security of the Wrapper Protocol Wmh

	Contents

