

10GBASE-T Line Signaling

Joseph N. Babanezhad

Plato Labs, (408) 379-5115

jobaba@platolabs.com

March 2003

Line Signaling Requirements

- Meet 10 Gb/s over a UTP CAT5e/6 channel with BER=10⁻¹⁰
- Backward compatible with 1000BASE-T
 - Launch voltage of 2 V_{p-p}
 - Base-band signaling (no modulation)
 - Scrambling used to spread the TX spectrum
- Meet the EMI specification for emitted power (FCC Class A)

PAM signal requirement at BER = 10⁻¹⁰

Line Code	bits/Baud	Signal bandwidth (MHz)	Baud rate (MS/s)	Detection SNR (dB)
MLT-3	1	1250	2500	21.01
PAM-5	2	625	1250	25.43
PAM-9	3	416	833	30.52
PAM-17	4	312.5	625	36.02
PAM-33	5	156.25	312.5	41.77

SNR = 6log₂(M) + Gap – Coding_Gain + Margin

Gap = 11.5dB $Coding_Gain = 6dB$ Margin = 6dB

Spectrum of various Line Coding

March 2003

Various Line Code Notches

Line Signaling Conclusions

- MLT-3 line-signal (used in 100BASE-T) causes considerable peaking around the pass-band and the notches
- PAM-5 requires the lowest detection SNR
- PAM-5 line-signal has been used before (100BASE-T2 & 1000BASE-T)
- PAM-5 allows line-signal's baud-rate to be a multiple of XGMII's baud-rate (not true of PAM-9 & PAM-33)

Class-E 4-Connector Channel Model

$$IL = 1.9910\sqrt{f} + 0.0177f + \frac{0.2625}{\sqrt{f}}$$

$$PSNEXT = 20\log\left(10^{\frac{72.3 - 15\log f}{20}} + 2\times10^{\frac{90 - 20\log f}{20}}\right)$$

$$PSELFEXT = 20\log\left(10^{\frac{64.8 - 20\log f}{20}} + 4\times10^{\frac{80.1 - 20\log f}{20}}\right)$$

$$ANEXT = 41.1 - 15\log\left(\frac{f}{100}\right)$$

$$RL = 32 - 10\log(f)$$

$$NOISE = -140\frac{dBm}{Hz}$$

Rate-reach Using Cancellation Option1

March 2003

Rate-reach Using Cancellation Option2

March 2003

Analog Front End (AFE) model for DSP Solution

Assumptions for AFE Linearity Analysis

- 2 V_p peak-to-peak PAM-M launch signal
- Analog differential blocks have only odd non-linearity
- Analog blocks are characterized by:

$$Y = \mathbf{b}X(1 + \mathbf{a}X^2)$$

- **b** block gain
- **a** 3rd order non-linearity coefficient

Worst-case Non-linearity Error (0m)

$$Y = X(1 + 7\alpha X^{2} + 63\alpha^{2} X^{4}) = X + error$$

Non-linear AFE (PAM-5)

March 2003

Non-linear AFE (PAM-10)

March 2003

AFE Linearity Requirement vs. Line-Signal

Line Code	Peak-to- Peak (V)	Launch Power (dBm)	 a Formula (%)	a Simulation (%)	Distortion ADC input (dB)
PAM-5 (Plato Labs)	2.000	7.00	1.74	2.00	31.0
PAM-10 (Solar Flare)	3.134	10.00	0.31	0.35	44.5
PAM-17 (Cicada 1/00)	2.000	5.74	0.43	0.45	42.3

Worst-case Non-linearity Error (100m)

1-When I=100 m for 1st six analog blocks β =1, for PGA β =2.08. Then:

$$Y = 2.08X(1 + 7\alpha X^{2} + 63\alpha^{2} X^{4}) = 2.08X + error$$

Non-linearity Analysis Conclusions

- For a given PAM-M line-signal the 3rd order nonlinearity coefficient (a) inversely depends on M and square of peak launch signal
- Smaller the a higher the AFE complexity (area and power)
- 3.134V_{p-p} PAM-10 line-signal requires AFEs that are 5.7X more linear than that of 2V_{p-p} PAM-5
- Let's maintain $2V_{p-p}$ launch voltage (used in 100BASE-T and 1000BASE-T)
- Let's maintain PAM-5 line-signal (used in 100BASE-T2 and 1000BASE-T)

Line-driver's Availability in Deep Sub-micron CMOS Process

$$(V_{Launch})_{pp}=2(V_{DD}-2V_{Headroom})$$

Process (CMOS)	Core Channel Length	Core V _{DD} (V)	I/O Channel Length	I/O V _{DD} (V)	TXDAC Can Use Core Device (2.000V _{pp})	TXDAC Can Use Core Device (3.134V _{pp})
0.35 m m	0.35 m m	3.3	0.35 m m	3.3	YES	YES
0.18mm	0.18 m m	1.8	0.35 m m	3.3	YES	YES
0.15 m m	0.15 m m	1.5	0.35 m m	3.3	YES	NO
0.13 m m	0.13 m m	1.2	0.35 m m	3.3	YES	NO

March 2003