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High-Speed Ethernet over UTP

< Low SNR requires complex signal processing
— Best handled in digital circuits (back-end DSP)

= All implementations require an analog front end, so
the question is: What should be in the AFE?
— An ADC of course
— A LPF for anti-aliasing and to reject out of band noise
— A VGA to handle variable signal levels

= But, a more complex AFE may be beneficial
— Can do some echo cancellation
— Can do some equalization

— Net result may be a significant reduction in overall cost &
power
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Quantization Noise Boosting
Simple AFE DSP
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Reduced Quantization Noise Boosting
AFE with EQ DSP
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State of the Art in High-Speed CMOS ADC'’s

e 2GS/s, 6b ADC in 0.18 um CMOS
— Jiang et. al., UCLA & Broadcom, ISSCC’03
— No interleaving, 5.7 ENOB, 0.5 mm?, 310 mW, 1.8 V

- 20 GS/s, 8b ADC in 0.18 pm CMOS
— Poulton et. al., Agilent, ISSCC’03
— Uses interleaving, 4.6-6.5 ENOB, 196 mm?, 9 W
— Requires BICMOS buffer chip

 Whatwould 1 GS/s at 11 ENOB require?

— Huge sampling capacitors to keep KT/C noise down (~4 pF)
— Extremely low jitter sampling clock (=100 fs)

— These specifications are not attainable in the near future In
standard digital CMOS processes

July 22, 2003 IEEE 10Gb/s Workgroup 6



Gigabit Ethernet 1000BASE-T (I)
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Gigabit Ethernet 1000BASE-T (II)

Insertion Loss Major impairments:
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A Mostly Digital Transceiver

Transmitters
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AFE Architectures Compared

* AFE with partial equalization

* AFE with partial Echo cancellation
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Simulation Results
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< All proposed AFE architectures can improve the SNR
< PreEC has moderate performance improvement

HFBF and HPF-FBF increase the detection SNR by nearly 2dB
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Simplifications of ADC and Digital Filters
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High-Frequency Boost Filter (HFBF)

e Purpose

— Perform HF boost for partial equalization prior to the ADC
guantization noise being added to the signal

e Performance B
— Detection SNR can be increased by almost 2dB
— Receiver DSP simplifications:
— ADC effective bits: 7 bits - 6.2 bits
— Oreach EC filter: 120 taps — 51 taps
— Oreach NC filter: /2 taps — 18 taps

[3]: J.Huang and R.Spencer, “Simulated Performance of 1000BASE-T Receiver with
Different Analog Front End Designs”, Proc. of 35" Asilomar Conf. on Signals,
Systems, and Computers, 2001
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HFBF Topology

< HFBF topology [
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= Optimization of HFBF topology

— Combine the function of LPF and HFBF together

— Select proper number and type of poles and zeros
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Performances of Different HFBF Topologies

HFBF Topologies Transfer Function SNR (dB)
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Integrated Analog Filtering Techniques;
Discrete Time

= Switched-Capacitor filters

Advantages Disadvantages

accurate transfer function need CT LPF

easily programmable need high-BW opamps
need clocks

need timing recovery
— Not practical at these frequencies

= Finite-Impulse Response Filters

Advantages Disadvantages
accurate transfer function need CT LPF

easily programmable need clocks

easily adaptable need timing recovery

need multipliers
need large S/H caps

U — Can also be continuous time

SS_RL
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Integrated Analog Filtering Techniques;
Continuous Time

= Finite-Impulse Response Filters

Advantages Disadvantages

accurate transfer function need multipliers

easily programmable limited total delay

easily adaptable hard to get accurate delay

can be noisy
= Transconductance-Capacitance (Gm-C) Filters

Advantages Disadvantages
open loop (high speed) need tuning control loop
programmable difficult to adapt

sensitive to parasitics
can be noisy

e MOSFET-C filters

Advantages Disadvantages

lower noise need high-BW opamp
slower & nonlinear
need tuning control loop
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Integrated Analog Filtering Techniques;
Continuous Time li

e Active RC filters

Advantages Disadvantages

lower noise need high-BW opamp
need resistors
need tuning control loop

e LC filters
Advantages Disadvantages
low noise Inductors are large
low power low Q
high frequency not adaptive

nonstandard process

= Other types of filters are also possible. The key point
IS that there are ways to iImplement analog filters
(either continuous-time or discrete-time) that can
perform partial equalization and, if necessary, be
adapted.
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Example: Nonidealities in Gm-C Filter Design

= g.-Cfilter implementation

||C11

|
Il (s
V. 1 ]2 =R V,

_C12 _C21
= = C,,=C,=C,=1pF

= Nonidealities

— Finite Bandwidth in the g, cells

— Finite output resistance in the g, cells

— Errors in the magnitudes of the g,’s

— Nonlinearity in the g,’s
U — Parasitic capacitance
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Effects of Non-ideal Factors (I)

= Effect of g, -cell bandwidth

BW (MHz)| 100 200 300 500 900
SNR(dB)|18.77 1863 18.61 1857 1853

= Effect of g -cell output resistance
RoutMQ)| 0.1 05 1 5 10

SNR(dB) | 1862 1859 18.61 18.60 18.61

= Effect of error in g, value
Gmerror| 0% 5%  10%  15%
SNR(dB) | 1861 18.61 18.61 18.57
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Effects of Non-ideal Factors (I1)

= Effect of parasitic capacitance
Cop(F) | o 005 0.1 0.2 0.4

SNR(dB)|18.71 1867 1861 1841 17.81

= Effect of distortion in the g, cell

THD (dB)|-40.23 -43.23 -44.70 -45.53
SNR(B)|17.76 18.24 18.61 18.65

= Parasitic capacitance and distortion are the most
iImportant factors affecting the system performance
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HFBF AFE

e Tolerable nonidealities

BW Rout Cp Gm error THD

300 MHz 1 MQ 0.1 pF 10% -44.41 dB

= Filter specifications:
— -3dB BW: 377MHz
— Boost: 10.55dB @ 74MHz

— THD (1Vpp @ 10MHz): -44.41dB
— SNR: 18.61dB (17.46 dB is achieved with an ideal L PF

AFE)

e Recelver reductions:
— ADC effective bits: 7 bits — 6.4 bits

— Oreach EC filter: 120 taps — 78 taps
— Oreach NC filter: 72 taps — 23 taps
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Gigabit Ethernet AFE Summary

Purpose:
— Explore AFE design to reduce overall complexity

Chosen AFE topology:
— One-stage real-pole HFBF withouta LPF

Filter design:
— Examine the effects of circuit nonidealities

Conclusion:

— It is feasible to implement the proposed HFBF AFE, in
CMOS, and reduce the overall power and area
without sacrificing performance

We are currently implementing this AFE
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10 Gbit Ethernet for copper - Comments

< A mostly-digital solution will severely tax state-of-the-
art ADC capabillities

e The AFE could include significant equalization to
reduce the burden on the ADC and back end DSP

— The AFE could probably be implemented in CMOS given
the frequency limitations imposed by CAT5 cables

< The AFE might also include some echo cancellation
and/or NEXT cancellation

— Echo and/or NEXT cancellation might be beneficial if
significant high-frequency boost is added since the boost
would also enhance these terms (echo dominates in gigabit
Ethernet)
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Further Comments

= One promising filter topology for 10 Gigabit Ethernet
might be a continuous-time analog FIR filter
— We built one for disk drives in 2000 [1], it had 5 taps with 6b

weights and an effective “sampling” rate of 600 MS/s. It
used 51 mW from 3V and was fabricated in 0.5 um CMOS

— We are currently working on one for an ultra-wideband
receiver correlator
— The weights can be digital or analog quantities

= Digital weights are good for adaptation, but the multipliers are
much larger and consume more power (we use MDACS)

= Analog weights allow the use of fully analog multipliers, but
then weight storage and adaptation are more difficult

[1] E. Burlingame and R. Spencer, “An analog CMOS high-speed continuous-time FIR
filter,” Proc. of the 26th European Solid-State Circuits Conf., Sept., 2000, pp 260-262
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