Maximizing performance in FPGA systems
(01/02/2006 10:00 AM EST)
EE Times
With programmable hard intellectual property like DSP building blocks, serdes and embedded processors, FPGAs have become complex systems-on-chip. As a result, extracting higher performance involves far more than just cranking up the fabric clock rate. Typically, one must balance a complex set of requirements-I/O bandwidth, hardware logic and/or embedded-processing performance.
Harnessing built-in FPGA features for maximum performance also takes the right combination of design techniques. Tool settings are needed that optimally implement the functional description as written in RTL code. Each phase of design development, synthesis and implementation is critical.
System architecture must be considered for effective trade-offs between programmable hardware resources. With the architecture defined and RTL code ready, synthesis tools assign the design's basic conceptual building blocks to technology cells.
![]() |
E-mail This Article | ![]() |
![]() |
Printer-Friendly Page |
Related Articles
New Articles
- Optimizing 16-Bit Unsigned Multipliers with Reversible Logic Gates for an Enhanced Performance
- How NoC architecture solves MCU design challenges
- Automating Hardware-Software Consistency in Complex SoCs
- Beyond Limits: Unleashing the 10.7 Gbps LPDDR5X Subsystem
- How to Design Secure SoCs: Essential Security Features for Digital Designers