Optimize your DSPs for power and performance
January 04, 2007 -- dspdesignline.com
The ever-growing demand for rich, multimedia signal processing in mobile devices raises a chronic technology challenge. The challenge is to squeeze higher functionality and performance within increasingly tighter power and space constraints. As a result, power-performance metrics are now a central concern in DSP design. New methods have been devised enabling designers to address the main areas of power consumption— namely leakage power, clock trees, logic transitions, and power grids— to significantly improve performance compared to conventional techniques.
In today's CMOS technology, power is consumed in two basic ways: statically and dynamically. Static power is consumed continuously—even during standby operation—through various leakage mechanisms. Dynamic power is consumed only during activity, such as logic and interface operations.
![]() |
E-mail This Article | ![]() |
![]() |
Printer-Friendly Page |
Related Articles
- DSPs with PCI Express interface extend connectivity while improving performance and power efficiency
- Asynchronous DSPs: Low power, high performance
- Optimize performance and power consumption with DSP hardware, software
- High-Performance DSPs -> AltiVec power: PCI buses fall short
- Achieving Your Low Power Goals with Synopsys Ultra Low Leakage IO
New Articles
- Optimizing 16-Bit Unsigned Multipliers with Reversible Logic Gates for an Enhanced Performance
- How NoC architecture solves MCU design challenges
- Automating Hardware-Software Consistency in Complex SoCs
- Beyond Limits: Unleashing the 10.7 Gbps LPDDR5X Subsystem
- How to Design Secure SoCs: Essential Security Features for Digital Designers