Scalable, On-Die Voltage Regulation for High Current Applications
How to architect, design, implement, and verify low-power digital integrated circuits
January 29, 2007 -- edadesignline.com
In recent years, power consumption has moved to the forefront of digital integrated circuit (IC) development concerns. The combination of higher clock speeds, greater functional integration, and smaller process geometries has contributed to significant growth in power density. Furthermore, with every new process generation, leakage power consumption increases at an exponential rate.
It is common to think of low-power designs only in the context of handheld, battery-powered devices such as personal digital assistants (PDAs) and cell phones. And it is certainly fair to say that this class of device is at the top of low-power development concerns. In reality, however, power consumption (and corresponding heat generation) is also of significant interest to semiconductor segments with fixed installations, such as networking, set-top boxes, and computing devices. For example, the InformationWeek "Power Surge" article on 27 February 2006 reported that data center electricity costs are now in the range of US$3.3 billion annually, and it can cost more to cool a data center than it does to lease the floor space in which to house it. Additionally, consumers increasingly demand quieter devices for their living rooms and desktops, and low-power designs help manufacturers eliminate noisy cooling fans from set-top boxes and other products.
E-mail This Article | Printer-Friendly Page |
|
Cadence Design Systems, Inc. Hot IP
Related Articles
New Articles
- Early Interactive Short Isolation for Faster SoC Verification
- The Ideal Crypto Coprocessor with Root of Trust to Support Customer Complete Full Chip Evaluation: PUFcc gained SESIP and PSA Certified™ Level 3 RoT Component Certification
- Advanced Packaging and Chiplets Can Be for Everyone
- Timing Optimization Technique Using Useful Skew in 5nm Technology Node
- Streamlining SoC Design with IDS-Integrate™
Most Popular
- System Verilog Assertions Simplified
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)
- UPF Constraint coding for SoC - A Case Study
- I2C Interface Timing Specifications and Constraints