Designing low-power multiprocessor chips
(02/12/2007 9:00 AM EST), EE Times
Just 10 years ago, the challenge chip designers faced was to design logic blocks with as few gates as possible to fit all the functions in a target die size. Today, advancements in semiconductor process technologies let designers easily pack millions of gates and complex mixed-signal components into a single chip. Nonetheless, chip designers still face the challenge of reducing the number of gates and implementing efficient architectures--not only to reach a target size but also to reduce total system power consumption.
From cell phones to portable media players, more products in the market are battery-powered, and low power consumption obviously leads to longer battery life. In the consumer electronics market, even ac-powered devices can benefit from reduced power consumption. Lower power draw leads to lower system cost by enabling the use of less-expensive chip packaging and the reduction or elimination of heat-dissipation components (e.g., fans and heat sinks).
But the demand for higher performance and more features has only served to increase total system power consumption.
The challenge is to achieve higher integration and performance within the system power budget. To reach that goal, chip designers are moving away from single-processor architectures and toward architectures that distribute tasks among multiple processors or cores. The cores can be either symmetric or heterogeneous, depending on the application.
For systems that require the lowest power consumption and best cost/performance, chip designers prefer to use heterogeneous multicore architectures, with task-dedicated processors that operate concurrently.
Care and forethought are required when designing multiprocessor chips; otherwise, a design can easily get trapped into data bandwidth limitations that will limit system performance. Designers must architect chips to handle data transactions efficiently and to minimize the stall cycles as multiple masters access the external memory.
E-mail This Article | Printer-Friendly Page |
Related Articles
New Articles
- Early Interactive Short Isolation for Faster SoC Verification
- The Ideal Crypto Coprocessor with Root of Trust to Support Customer Complete Full Chip Evaluation: PUFcc gained SESIP and PSA Certified™ Level 3 RoT Component Certification
- Advanced Packaging and Chiplets Can Be for Everyone
- Timing Optimization Technique Using Useful Skew in 5nm Technology Node
- Streamlining SoC Design with IDS-Integrate™
Most Popular
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- System Verilog Assertions Simplified
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)
- UPF Constraint coding for SoC - A Case Study
- UVM RAL Model: Usage and Application