Dual Port Register File Compiler (1 Read-Only Port, 1 Write-Only Port)
How to use FPGAs to develop an intelligent solar tracking system
pldesignline.com (September 24, 2008)
Abstract
Solar panels are typically in fixed positions. They're limited in their energy-generating ability because they cannot consistently take full advantage of maximum sunlight. For more effective solar energy systems, the solar panels should be able to align with sunlight as it changes during a given day and from season to season. This article examines the design advantages of creating an intelligent solar tracking system using an embedded processor and an FPGA in a system-on-a-chip (SOC) architecture.
Introduction
Solar energy is becoming increasingly attractive as we grapple with global climate changes. However, while solar energy is free, non-polluting, and inexhaustible, solar panels are traditionally fixed. As such, they cannot take advantage of maximum sunlight as weather conditions and seasons change. This article describes an FPGA- and embedded processor-based system-on-a-chip (SOC) implementation of a prototypical solar-tracking electricity generation system that improves the efficiency of solar panels by allowing them to align with the sun's movements.
![]() |
E-mail This Article | ![]() |
![]() |
Printer-Friendly Page |
|
Altera Hot IP
Related Articles
New Articles
- Optimizing 16-Bit Unsigned Multipliers with Reversible Logic Gates for an Enhanced Performance
- How NoC architecture solves MCU design challenges
- Automating Hardware-Software Consistency in Complex SoCs
- Beyond Limits: Unleashing the 10.7 Gbps LPDDR5X Subsystem
- How to Design Secure SoCs: Essential Security Features for Digital Designers