5V Library for Generic I/O and ESD Applications TSMC 12NM FFC/FFC+
How formal MDV can eliminate IP integration uncertainty
The increased deployment of silicon intellectual property (IP) blocks is vital to boosting productivity in the development of large, complex system-on-chip (SoC) designs. But the increase in SoC design productivity is not matched by as great an increase in SoC verification productivity. Managers and engineers still struggle with a persistent “verification productivity gap.” Why? Because there is a persistent IP verification quality gap, too. The resulting uncertainty about the original verification quality of individual IP blocks often requires time-consuming remedial verification by the SoC design team. The alternative is to risk SoC design failure because of inadequate IP verification, which ultimately delays the project even more.
This article outlines how the latest formal metric-driven verification (MDV) methodology and technologies can eliminate integration uncertainty through the automatic generation of Accellera-defined coverage metrics, without the assistance of simulation. This formal MDV methodology measures not only the usual control coverage, but also observation coverage — a serious missing link in many other MDV approaches. The methodology is easily integrated into existing MDV flows or can be used stand-alone.
![]() |
E-mail This Article | ![]() |
![]() |
Printer-Friendly Page |
|
Related Articles
- It's Not My Fault! How to Run a Better Fault Campaign Using Formal
- How formal verification saves time in digital IP design
- How to Save Time and Improve Communication Between Semiconductor Design and Verification Engineers
- How control electronics can help scale quantum computers
- How Low Can You Go? Pushing the Limits of Transistors - Deep Low Voltage Enablement of Embedded Memories and Logic Libraries to Achieve Extreme Low Power
New Articles
- Beyond Limits: Unleashing the 10.7 Gbps LPDDR5X Subsystem
- How to Design Secure SoCs: Essential Security Features for Digital Designers
- System level on-chip monitoring and analytics with Tessent Embedded Analytics
- What tamper detection IP brings to SoC designs
- RISC-V in 2025: Progress, Challenges,and What's Next for Automotive & OpenHardware
Most Popular
- System Verilog Assertions Simplified
- Beyond Limits: Unleashing the 10.7 Gbps LPDDR5X Subsystem
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- Optimizing Analog Layouts: Techniques for Effective Layout Matching
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)