Using GPUs to accelerate EDA applications
Uri Tal, Rocketick
EETimes (5/3/2012 12:11 PM EDT)
Graphic Processing Units (GPUs) hold great promise in the field of high-performance-computing (HPC). Having immense computational power and high memory bandwidth packed in a commoditized hardware platform, GPUs have already been successfully utilized by oil and gas companies, and computational finance and similar organizations seeking the best compute-bang for their bucks. EDA applications have a lot in common with other HPC applications – huge quantities of computations and memory-related operations.
EDA applications have been traditionally implemented on regular processors. Most, if not all, of these applications were not designed for parallel or vector processors. For example, HDL simulators, being event-driven, manage a single queue of events and handle events one at a time, serially. To be able to utilize a massive multi-core architecture, it is not sufficient to even completely rewrite the software; the algorithms must be re-thought with parallelism at the heart of the process.
![]() |
E-mail This Article | ![]() |
![]() |
Printer-Friendly Page |
Related Articles
New Articles
- MIPI in FPGAs for mobile-influenced devices
- Optimizing 16-Bit Unsigned Multipliers with Reversible Logic Gates for an Enhanced Performance
- How NoC architecture solves MCU design challenges
- Automating Hardware-Software Consistency in Complex SoCs
- Beyond Limits: Unleashing the 10.7 Gbps LPDDR5X Subsystem