Ultra-low power 32 kHz RC oscillator designed in GlobalFoundries 22FDX
FRAMs as alternatives to flash memory in embedded designs
Priya Thanigai, Texas Instruments
EETimes (7/19/2012 12:38 AM EDT)
Ferroelectric random access memory (FRAM) is widely known as a non-volatile, stand-alone memory technology that has been a part of the semiconductor industry for more than a decade.
In recent years, integrated circuit manufacturers have been considering FRAM as a strong contender for embedded, non-volatile memory, as an alternative to flash technology. This article discusses key technology attributes of FRAM while exploring specific use cases that demonstrate FRAM’s advantages.
Today there are multiple memory technologies that have the potential to change the landscape of embedded processing. However, none so far have surfaced as a strong contender for replacing flash technology in microcontrollers (MCUs) until FRAM.
What is FRAM?
FRAM is non-volatile memory that has power, endurance and read/write speeds similar to commonly used static RAM (SRAM). Information stored in an FRAM cell corresponds to the state of polarization of a ferroelectric crystal that can hold its contents even after the power source is removed. This is what makes FRAM truly non-volatile. Also, since the energy required to polarize a crystal is relatively low when compared to programming a flash cell, FRAM writes are inherently lower power than flash.
![]() |
E-mail This Article | ![]() |
![]() |
Printer-Friendly Page |
|
Related Articles
New Articles
- Optimizing 16-Bit Unsigned Multipliers with Reversible Logic Gates for an Enhanced Performance
- How NoC architecture solves MCU design challenges
- Automating Hardware-Software Consistency in Complex SoCs
- Beyond Limits: Unleashing the 10.7 Gbps LPDDR5X Subsystem
- How to Design Secure SoCs: Essential Security Features for Digital Designers