Using SoCs for portable medical equipment
Sanjeev Kumar, Cypress Semiconductor
EETimes (1/21/2013 10:55 AM EST)
Portable medical electronics has seen tremendous growth and adoption in the recent years. More equipment variants are being introduced in the market by an increasing number of companies. The need of the hour is better mass producible designs which are low in complexity and provide acceptable performance so as to keep the cost of the device low. To achieve this, designers need to consider power efficiency, cost, form factor, and FDA certification of components, among other factors.
A typical portable medical electronic system comprises components like analog front-ends for data acquisition, amplifiers and filters for signal conditioning, analog-to-digital converters (ADCs) for signal and sensor data acquisition, buttons to accept user feedback, an MCU to execute algorithms, and a variety of interfaces such as an LCD display, USB port and so on. Traditional design methodologies bring together all of the needed functionality onto a PCB by way of individual components. This method increases the overall system BOM, PCB complexity, and design cycle. Using individual analog components also reduces analog IP protection as the system can be reverse engineered easily.
Portable medical equipment design and manufacture is also regulated by the Food and Drug Administration (FDA). This means that their design and construction must follow precisely documented processes, and performance must meet stringent documentation, development testing, production testing, and field maintenance requirements. One FDA regulation requires that the components used in a medical device have to be guaranteed to be available in production for the next five years. This provides an incentive for developers to reduce the overall number of components used to make FDA certification simpler.
E-mail This Article | Printer-Friendly Page |
|
Related Articles
New Articles
- Early Interactive Short Isolation for Faster SoC Verification
- The Ideal Crypto Coprocessor with Root of Trust to Support Customer Complete Full Chip Evaluation: PUFcc gained SESIP and PSA Certified™ Level 3 RoT Component Certification
- Advanced Packaging and Chiplets Can Be for Everyone
- Timing Optimization Technique Using Useful Skew in 5nm Technology Node
- Streamlining SoC Design with IDS-Integrate™
Most Popular
- The Ideal Crypto Coprocessor with Root of Trust to Support Customer Complete Full Chip Evaluation: PUFcc gained SESIP and PSA Certified™ Level 3 RoT Component Certification
- System Verilog Assertions Simplified
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- PCIe error logging and handling on a typical SoC
- Design Rule Checks (DRC) - A Practical View for 28nm Technology