What Goes Around Comes Around: Moore's Law At 10nm And Beyond
Greg Yeric, ARM
Semiconductor Engineering (February 13th, 2014)
With lithography scaling on hold and the silicon MOSFET losing its 40-odd-year grip on scalability, how can the industry continue to squeeze scaling?
Gordon Moore penned his famous observation in an era when the people developing the process were also the people designing the circuits. Over time, things got more complicated and work specialization set in, but all was well in the world for many years as the fabs kept delivering on Moore’s Law. Yes, designers had to come up with lots of tricks to advance power and performance scaling, but that’s Dennard’s problem, not Moore’s. As a designer in the present day, if you view Moore’s Law from that original, unilateral perspective, then Moore’s Law is indeed long gone.
Or at least on an extended vacation.
Lithography scaling is on hold and the silicon MOSFET is losing its 40-odd-year grip on scalability. I’d like to use this forum to provide a few observations along these lines, which fall into two categories: (1) squeezing existing technology harder and (2) path-finding to the best solution in an increasingly complicated set of technology scaling options.
Related Articles
New Articles
- Optimizing 16-Bit Unsigned Multipliers with Reversible Logic Gates for an Enhanced Performance
- How NoC architecture solves MCU design challenges
- Automating Hardware-Software Consistency in Complex SoCs
- Beyond Limits: Unleashing the 10.7 Gbps LPDDR5X Subsystem
- How to Design Secure SoCs: Essential Security Features for Digital Designers
Most Popular
![]() |
E-mail This Article | ![]() |
![]() |
Printer-Friendly Page |