Silicon platform optimization: A top-down methodology
Rohit Mittal & Anand Konanur
EDN (November 12, 2014)
Recently there has been an explosion of short-range wireless applications. Some well-known examples include NFC payment systems and wireless charging etc. These applications require an interaction of electromagnetic, electrical, and mechanical domains. Unfortunately there is no tool that can solve the complete system efficiently for rapid silicon and system specification. The net effect is that either the silicon is not properly specified or the system needs to be redesigned.
Traditional electrical simulators such as SPICE are effective in solving lumped element equations. However, such tools cannot model EM fields present in sensors, especially when they are embedded in the vicinity of other components and metallic chassis. Other products can solve Maxwell's equations using the FEM (Finite Element Method) but are woefully inefficient in importing transistor parameters. We will present a unified methodology that takes into account the best of both tools to create a tops-down view of the complete system. A representative system is shown but this methodology can be extended to other interdisciplinary optimization problems.
![]() |
E-mail This Article | ![]() |
![]() |
Printer-Friendly Page |
Related Articles
New Articles
- When Traceability Catches What Verification Does Not
- Implementing C model integration using DPI in SystemVerilog
- Stop-For-Top IP model to replace One-Stop-Shop by 2025... and support the creation of successful Chiplet business
- Lossless Compression Efficiency of JPEG-LS, PNG, QOI and JPEG2000: A Comparative Study
- Four ways to build a CAD flow: In-house design to custom-EDA tool