Parasitic Extraction of FinFET-based Memory Cells
Karen Chow, Mentor Graphics Corp.
5/25/2015 10:20 AM EDT
Memory chips must meet strict specifications for fast data transfer, reliability, and power consumption, so accurate characterization is required at every stage of design.
The introduction of FinFETs at 16 and 14 nm nodes enables higher density and performance, and reduced power usage, but it also increases challenges in design and validation. Memory designers need a tool that can help them analyze parasitics quickly and accurately throughout the design cycle.
Introduction to FinFETs
FinFETs are three dimensional structures that rise above the substrate and look like a fin, hence the name. Theses fins form the source and the drain, and the gate wraps around the source and drain, providing better control of the channel.
When the device is in the off state, there is very little leakage current. With FinFET designs, there is low threshold voltage, and a lower supply voltage can be used. This drop in supply voltage results in reduced power usage while maintaining performance.
![]() |
E-mail This Article | ![]() |
![]() |
Printer-Friendly Page |
|
Related Articles
- Design, Test & Repair Methodology for FinFET-Based Memories
- The Answer to Non-Volatile Memory Security Issues at Advanced Nodes: Go Volatile!
- Why the Memory Subsystem is Critical in Inferencing Chips
- Memory Testing - An Insight into Algorithms and Self Repair Mechanism
- Which DDR SDRAM Memory to Use and When
New Articles
- The pitfalls of mixing formal and simulation: Where trouble starts
- New Ethernet Adaptation Layer Adds Control Option to MIPI A-PHY Automotive Networks
- Automotive electronics revolution requires faster, smarter interfaces
- An 800 Mpixels/s, ~260 LUTs Implementation of the QOI Lossless Image Compression Algorithm and its Improvement through Hilbert Scanning
- AES 256 algorithm towards Data Security in Edge Computing Environment