NVM OTP in UMC (180nm, 153nm, 110nm, 90nm, 80nm, 55nm, 40nm, 28nm, 22nm)
Make SoCs flexible with embedded FPGA
Geoff Tate, Flex Logix
EDN (November 30, 2016)
Systems designers have long sought to provide programmability and flexibility in their systems designs to meet varying customer needs and evolving standards. The two most common approaches - FPGAs and MPUs/MCUs - provide different kinds of capabilities and complement each other, but have typically been separate devices. Now, chips with both processors and embedded FPGA are becoming a design option.
With the growth of connectivity, information, and data, there is a growing need for new processing capabilities that can span from ultra-low power <$1 microcontrollers to very large networking chips. Moore’s Law has given rise to the availability of new SoCs and MCUs for existing and new markets with each one of these SoCs/MCUs designed specifically for the market segment it is being targeted. This widespread use of special-purpose architectures greatly increases the need for new designs, however, and the rise of new markets (e.g., IoT) and device types (e.g., sensors) for these new markets is growing faster than the SoC types available.
![]() |
E-mail This Article | ![]() |
![]() |
Printer-Friendly Page |
|
Related Articles
New Articles
- Optimizing 16-Bit Unsigned Multipliers with Reversible Logic Gates for an Enhanced Performance
- How NoC architecture solves MCU design challenges
- Automating Hardware-Software Consistency in Complex SoCs
- Beyond Limits: Unleashing the 10.7 Gbps LPDDR5X Subsystem
- How to Design Secure SoCs: Essential Security Features for Digital Designers