From ADAS to Autonomous Cars: Key Design Lessons
Kurt Shuler, VP Marketing, Arteris
3/27/2018 00:01 AM EDT
Autonomous driving can be challenging. But here are three major lessons that automotive developers have learned while streamlining the ADAS designs during the past few years.
Autonomous driving systems are challenging design engineers in ways that personal computer, smartphone, and data center systems did not. At the same time, however, there is a lot that semiconductor developers can learn from the evolution of advanced driving assistance systems (ADAS).
So, while integration challenges may perplex the developers of system-on-chips (SoCs) for self-driving vehicles, the ADAS learning curve can be crucial in putting the technology of the century to work in the cars of the future.
Below are three major lessons that automotive developers have learned while streamlining the ADAS designs during the past few years.
![]() |
E-mail This Article | ![]() |
![]() |
Printer-Friendly Page |
|
Arteris Hot IP
Related Articles
- Key considerations and challenges when choosing LDOs
- Artificial Intelligence (AI) utilizing deep learning techniques to enhance ADAS
- Mastering Key Technologies to Realize the Dream - M31 IP Integration Services
- Driving ADAS Applications with MIPI CSI-2
- Implementation basics for autonomous driving vehicles
New Articles
- Optimizing 16-Bit Unsigned Multipliers with Reversible Logic Gates for an Enhanced Performance
- How NoC architecture solves MCU design challenges
- Automating Hardware-Software Consistency in Complex SoCs
- Beyond Limits: Unleashing the 10.7 Gbps LPDDR5X Subsystem
- How to Design Secure SoCs: Essential Security Features for Digital Designers