Three ways of looking at a sigma-delta ADC device
By Vladyslav Kozlov, Dialog Semiconductor, a Renesas company
The growing availability of digital ICs like microcontrollers, microprocessors, and field-programmable gate arrays (FPGAs) allows developers to use complex digital processing techniques rather than analog signal conditioning. For this reason, analog-to-digital converters (ADCs) have become a widely-used component in mixed-signal circuits.
There are many types of ADCs: successive-approximation ADCs, sigma-delta (ΣΔ) ADCs, direct-conversion ADCs, capacitor charge/discharge-based ADCs, ADCs with voltage-to-frequency converters, and others. All these ADCs provide different accuracy characteristics, sampling rate limitations, and cost points.
This article outlines three major design considerations for selecting a ΣΔ ADC.
![]() |
E-mail This Article | ![]() |
![]() |
Printer-Friendly Page |
|
Related Articles
- Characterizing Nanometer CMOS PLLs, Sigma-Delta ADCs and AGCs
- How to Save Time and Improve Communication Between Semiconductor Design and Verification Engineers
- Why Transceiver-Rich FPGAs Are Suitable for Vehicle Infotainment System Designs
- Three Major Inflection Points for Sourcing Bluetooth Intellectual Property
- Reliability challenges in 3D IC semiconductor design
New Articles
- Optimizing 16-Bit Unsigned Multipliers with Reversible Logic Gates for an Enhanced Performance
- How NoC architecture solves MCU design challenges
- Automating Hardware-Software Consistency in Complex SoCs
- Beyond Limits: Unleashing the 10.7 Gbps LPDDR5X Subsystem
- How to Design Secure SoCs: Essential Security Features for Digital Designers