eFPGA Saved Us Millions of Dollars. It Can Do the Same for You
By Andy Jaros, Flex Logix
For those of you who follow Flex Logix®, you already know that we have an IP business, EFLX® eFGPA, and an edge inferencing co-processor chip and board business, InferX®. InferX came about because we had many customers ask if they can run AI/ML algorithms in EFLX. The answer was and still is, of course you can – EFLX is an FPGA fabric similar to what FPGA chips use. Our co-founder, Cheng Wang, took some time and studied the challenges of AI processing in more detail and came up with a highly efficient edge inferencing processor leveraging Flex Logix proprietary eFPGA technology. When performance, power and area results were shared with our board of directors, they thought it so compelling, they told us to build a chip. Hence, InferX X1 was born.
The X1 was specified to be a lean, high performance edge accelerator for AI inference processing incorporating Flex Logix’ proprietary tensor processor, PCIe, DDR, memory and a NoC. When it came time to architect the chip, there was an internal debate about adding EFLX to the X1 chip, mainly because it takes up area and our use case was pretty basic: support a GPIO interface and help with chip debug. Not a strong reason to add one square millimeter in 16nm. We proceeded anyway to demonstrate “Eating our own dog food”, by connecting the eFPGA to both the NoC bus and GPIO to maximize flexibility. Fast forward to chip bring-up.
E-mail This Article | Printer-Friendly Page |
|
Related Articles
New Articles
- Early Interactive Short Isolation for Faster SoC Verification
- The Ideal Crypto Coprocessor with Root of Trust to Support Customer Complete Full Chip Evaluation: PUFcc gained SESIP and PSA Certified™ Level 3 RoT Component Certification
- Advanced Packaging and Chiplets Can Be for Everyone
- Timing Optimization Technique Using Useful Skew in 5nm Technology Node
- Streamlining SoC Design with IDS-Integrate™
Most Popular
- System Verilog Assertions Simplified
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- Dynamic Memory Allocation and Fragmentation in C and C++
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)
- UPF Constraint coding for SoC - A Case Study