Partitioning to optimize AI inference for multi-core platforms
By Rami Drucker, Ceva
EDN (January 8, 2024)
Not so long ago, artificial intelligence (AI) inference at the edge was a novelty easily supported by a single neural processing unit (NPU) IP accelerator embedded in the edge device. Expectations have accelerated rapidly since then. Now we want embedded AI inference to handle multiple cameras, complex scene segmentation, voice recognition with intelligent noise suppression, fusion between multiple sensors, and now very large and complex generative AI models.
Such applications can deliver acceptable throughput for edge products only when run on multi-core AI processors. NPU IP accelerators are already available to meet this need, extending to eight or more parallel cores and able to handle multiple inference tasks in parallel. But how should you partition expected AI inference workloads for your product to take maximum advantage of all that horsepower?
![]() |
E-mail This Article | ![]() |
![]() |
Printer-Friendly Page |
|
Ceva, Inc. Hot IP
Related Articles
New Articles
- Optimizing 16-Bit Unsigned Multipliers with Reversible Logic Gates for an Enhanced Performance
- How NoC architecture solves MCU design challenges
- Automating Hardware-Software Consistency in Complex SoCs
- Beyond Limits: Unleashing the 10.7 Gbps LPDDR5X Subsystem
- How to Design Secure SoCs: Essential Security Features for Digital Designers