ARC-V RHX-105 dual-issue, 32-bit RISC-V processor for real-time applications (multi-core)
SoC design: What's next for NoCs?
By Andy Nightingale, Arteris
EDN (January 24, 2025)
Today’s high-end system-on-chips (SoCs) rely heavily on sophisticated network-on-chip (NoC) technology to achieve performance and scalability. As the demands of artificial intelligence (AI), high-performance computing (HPC), and other compute-intensive applications continue to evolve, designing the next generation of SoCs will require even smarter and more efficient NoC solutions to meet these challenges.
Although these advancements present exciting opportunities, they also bring significant hurdles. SoC designers face rapid expansion in architecture, time-to-market pressures, scarcity of expertise, suboptimal utilization of resources, and disparate toolchains.
![]() |
E-mail This Article | ![]() |
![]() |
Printer-Friendly Page |
|
Arteris Hot IP
Related Articles
New Articles
- RISC-V in 2025: Progress, Challenges,and What's Next for Automotive & OpenHardware
- Understanding MACsec and Its Integration
- Discover new Tessent UltraSight-V from Siemens EDA, and accelerate your RISC-V development.
- The Critical Factors of a High-performance Audio Codec - What Chip Designers Need to Know
- Density Management in Analog Layout Design: Addressing Issues and Ensuring Consistency
Most Popular
- RISC-V in 2025: Progress, Challenges,and What's Next for Automotive & OpenHardware
- System Verilog Assertions Simplified
- System Verilog Macro: A Powerful Feature for Design Verification Projects
- UPF Constraint coding for SoC - A Case Study
- A Heuristic Approach to Fix Design Rule Check (DRC) Violations in ASIC Designs @7nm FinFET Technology