NVM OTP in UMC (180nm, 153nm, 110nm, 90nm, 80nm, 55nm, 40nm, 28nm, 22nm)
Tensilica Configurable Processors Used in Stanford Smart Memories Project
Update: Cadence Completes Acquisition of Tensilica (Apr 24, 2013)
SANTA CLARA, CA, – February 28, 2008 – Tensilica, Inc. today announced that Stanford University’s Smart Memories Project used Tensilica’s Xtensa LX2 configurable processor to develop a multiprocessor computing infrastructure for next generation applications. The Stanford Smart Memories Project has developed a prototype system-on-chip (SOC) design that provides the user the ability to program both the processor and the memory system of a chip-level multiprocessor. Using Tensilica allowed the Smart Memory team to focus on creating a flexible memory system that supports many different memory models, including message passing, coherent shared memory, and transactional memory. The design is currently being evaluated for possible commercial deployment by a couple of large semiconductor companies.
“It’s exciting to see our processor cores enabling ground-breaking research on next-generation computing architectures,” said Chris Rowen, Tensilica’s president and CEO. “Universities play a key role in driving major electronics innovations, especially in the grand-challenge problems in scalable multiprocessor architectures and software paradigms.”
The Stanford team configured Xtensa as 3-way issue VLIW processors with seven stage pipeline, 64 general purpose registers, a 32-bit floating point using the TIE (Tensilica Instruction Extension) Language. The Smart Memories group has defined new interfaces to the memory, which allows the processor to respond to the meta-data bits in the memory so it can support various kinds of cache coherence. The resulting system is a hierarchical multiprocessor. Two Tensilica processors are placed in a tile, along with a number of programmable memory mats. Four tiles are then grouped with a programmable local memory controller to form a quad, and quads interconnect with each other and memory controllers through an on-chip network to form a Smart Memory chip.
Stanford researchers designed Smart Memories to efficiently support different programming models, allowing an application to be programmed and run in the model that gives the best performance and/or programming ease. Smart Memories can reconfigure its memory system to provide the unique memory access requirements for each of three major models:
- The Shared Memory/Multithread programming model gives the programmer a cache coherent shared memory environment.
- The Streaming programming model is especially useful in high-performance data-parallel applications, such a multimedia and DSP.
- The Transaction programming model offers a simpler way to parallelize applications than by using different threads.
Tensilica offers the broadest line of controller, CPU and specialty DSP processors on the market today, in both an off-the-shelf format via the Diamond Standard Series cores and with full designer configurability with the Xtensa processor family. Tensilica’s low-power, benchmark proven processors have been designed into high-volume products at industry leaders in the digital consumer, networking and telecommunications markets. All Tensilica processor cores are complete with a matching software development tool environment, portfolio of system simulation models, and hardware implementation tool support. For more information on Tensilica's patented approach to the creation of application-specific building blocks for SOC design, visit www.tensilica.com.
|
Related News
- Cadence Tensilica Xtensa Processors Address Most Stringent Automotive Functional Safety Requirements with Full ISO 26262 Compliance to ASIL-D
- GEO Semiconductor Selects Cadence Tensilica Vision P5 DSP for Their Most Advanced Automotive Smart Viewing Camera Processor
- Fortemedia Licenses Tensilica Fusion F1 DSP for Use in Always-On Smart Microphone Processor
- Altera Showcases the Capabilities of Single-Chip Configurable Processors in Latest MAX 10 FPGA Kit
- Muller-BBM Active Noise Control and Sound Design Now Optimized on Cadence Tensilica HiFi Audio/Voice Processors for Automotive Applications
Breaking News
- Arteris Joins Intel Foundry Accelerator Ecosystem Alliance Program to Support Advanced Semiconductor Designs
- SkyeChip Joins Intel Foundry Accelerator IP Alliance
- Siemens and Intel Foundry advance their collaboration to enable cutting-edge integrated circuits and advanced packaging solutions for 2D and 3D IC
- Cadence Expands Design IP Portfolio Optimized for Intel 18A and Intel 18A-P Technologies, Advancing AI, HPC and Mobility Applications
- Synopsys and Intel Foundry Propel Angstrom-Scale Chip Designs on Intel 18A and Intel 18A-P Technologies
Most Popular
- QuickLogic Delivers eFPGA Hard IP for Intel 18A Based Test Chip
- Siemens collaborates with TSMC to drive further innovation in semiconductor design and integration
- Aion Silicon Joins Intel Foundry Accelerator Design Services Alliance to Deliver Next-Generation Custom SoCs at Scale
- TSMC Unveils Next-Generation A14 Process at North America Technology Symposium
- BOS Semiconductors to Partner with Intel to Accelerate Automotive AI Innovation
![]() |
E-mail This Article | ![]() |
![]() |
Printer-Friendly Page |