Are Processors Running Out Of Steam?
Ed Sperling, Semiconductor Engineering
February 14th, 2014
First of Two Parts: Clock speeds can’t go higher, and most software still can’t take advantage of multiple cores. A look at what’s next.
In 2004, Intel introduced a new line of Pentium chips that ran at 3.6GHz. Fast forward to today, and the company’s i7 processors run at 3.5GHz with a Turbo Boost to 3.9GHz.
There have been many improvements in the meantime. There is more cache and dramatically faster access to data stored in that cache. And there are more cores with improved coherency between them. But the big problem is physics—it’s impossible to turn up the clock speed on a single core for very long without burning the chip. More cores can solve that problem, but most software applications still can’t take advantage of more cores. Even controlling current leakage, and subsequently heat, with finFET transistors provides only a one-time gain.
Related News
Breaking News
- Arteris Joins Intel Foundry Accelerator Ecosystem Alliance Program to Support Advanced Semiconductor Designs
- SkyeChip Joins Intel Foundry Accelerator IP Alliance
- Siemens and Intel Foundry advance their collaboration to enable cutting-edge integrated circuits and advanced packaging solutions for 2D and 3D IC
- Cadence Expands Design IP Portfolio Optimized for Intel 18A and Intel 18A-P Technologies, Advancing AI, HPC and Mobility Applications
- Synopsys and Intel Foundry Propel Angstrom-Scale Chip Designs on Intel 18A and Intel 18A-P Technologies
Most Popular
- QuickLogic Delivers eFPGA Hard IP for Intel 18A Based Test Chip
- Siemens collaborates with TSMC to drive further innovation in semiconductor design and integration
- Aion Silicon Joins Intel Foundry Accelerator Design Services Alliance to Deliver Next-Generation Custom SoCs at Scale
- TSMC Unveils Next-Generation A14 Process at North America Technology Symposium
- BOS Semiconductors to Partner with Intel to Accelerate Automotive AI Innovation
![]() |
E-mail This Article | ![]() |
![]() |
Printer-Friendly Page |