Ultra-low power 32 kHz RC oscillator designed in GlobalFoundries 22FDX
Xenergic's SRAM For Next Generation Of Ultra-Low Power Products
December 14, 2020 -- Xenergic was selected by Bosch Sensortec to provide ultra-low power SRAM for their sensing solutions based on microelectromechanical systems (MEMS). Bosch Sensortec GmbH, a fully owned subsidiary of Robert Bosch GmbH, develops and markets a wide portfolio of microelectromechanical systems (MEMS) sensors and solutions tailored for smartphones, tablets, wearables and hearables, AR/VR devices, drones, robots, smart home and IoT (Internet of Things) applications.
Xenergic’s memory solution will enable Bosch Sensortec to add more features and significantly extend the battery lifetime in their products. Richer set of functionalities such as integrated AI/ML features are demanded in next generation of sensor market. However, power is a limiting factor for realization of these functionalities.
On-chip memories are among the largest blocks in digital integrated circuits. On average, the area share is around 70% and their power share is often more than 50%. This is a major hurdle for implementing richer functionalities and extending the battery lifetime in low-power MEMS and system on chips (SoC).
Xenergic provides ultra-low power SRAM IP with its MemoryTailorTM. The MemoryTailorTM , provides Bosch Sensortec with a unique memory solution, optimized for each circuit’s specific design requirements such as voltage, speed and area constraints.
“Working with Bosch Sensortec and their very skilled team in low power design is a privilege and great experience. Combined, our technologies redefine the power boundaries in sensor design” says Babak Mohammadi, CEO of Xenergic.
Xenergic AB, based in Lund, Sweden, is offering on-chip memory (SRAM) solutions with a revolutionizing low power consumption for digital integrated circuits such as AI/ML applications, MEMS products, image sensors, low power Bluetooth, IoT modems and edge processors. The product portfolio consists of single and dual rail SRAM with single port, two port and dual port configurations. It is currently implemented in most major used process technologies and typically reduces the power consumption of an entire SoC by 70-90%.
|
Related News
- Ceva Bluetooth Low Energy and 802.15.4 IPs Bring Ultra-Low Power Wireless Connectivity to Alif Semiconductor's Balletto Family of MCUs
- LeapMind's "Efficiera" Ultra-low Power AI Inference Accelerator IP Was Verified RTL Design for ASIC/ASSP Conversion
- BrainChip's Success in 2020 Advances Fields of On-Chip Learning and Ultra-Low Power Edge AI
- GLOBALFOUNDRIES Strengthens 22FDX eMRAM Platform with eVaderis' Ultra-low Power MCU Reference Design
- iFLYTEK On-Device Speech Recognition Software Now Available For CEVA's Ultra-Low Power Audio/Voice DSPs
Breaking News
- Arteris Joins Intel Foundry Accelerator Ecosystem Alliance Program to Support Advanced Semiconductor Designs
- SkyeChip Joins Intel Foundry Accelerator IP Alliance
- Siemens and Intel Foundry advance their collaboration to enable cutting-edge integrated circuits and advanced packaging solutions for 2D and 3D IC
- Cadence Expands Design IP Portfolio Optimized for Intel 18A and Intel 18A-P Technologies, Advancing AI, HPC and Mobility Applications
- Synopsys and Intel Foundry Propel Angstrom-Scale Chip Designs on Intel 18A and Intel 18A-P Technologies
Most Popular
- QuickLogic Delivers eFPGA Hard IP for Intel 18A Based Test Chip
- Siemens collaborates with TSMC to drive further innovation in semiconductor design and integration
- Aion Silicon Joins Intel Foundry Accelerator Design Services Alliance to Deliver Next-Generation Custom SoCs at Scale
- TSMC Unveils Next-Generation A14 Process at North America Technology Symposium
- BOS Semiconductors to Partner with Intel to Accelerate Automotive AI Innovation
![]() |
E-mail This Article | ![]() |
![]() |
Printer-Friendly Page |