

	
		Home
	Search Silicon IP
	Search Verification IP
	Latest News
	Industry Articles
	Industry Expert Blogs
	Videos
	Slides
	Podcast

 ≡ Menu

 Design And Reuse

	
		Login
		
	|
	
	Subscribe
	

	|
	
 Company

	|
	
D&R China

	|
	
dr-embedded.com

	|
	
Wiki

	|
	
[image:]

 [image:] English
 [image:] Chinese

				
		Login
		
	|
	
	Subscribe to D&R SoC News Alert
	

	Design And Reuse
	

 	
 Search IP
					
					 Categories

 	Silicon IP
	Analog & Mixed Signal
	Storage Controller & PHY
	Graphic & Peripheral
	Interface Controller & PHY
	Processors & Microcontrollers
	Memory & Logic Library
	Security
	Multimedia
	Wireline Communication
	Wireless Communication
	
 Silicon IP Vendors

	
						

								
 Verification IP

	
 Search / Browse

	
 Verification IP Vendors

	
 Software IP

	
 Search / Browse

	
 Software IP Vendors

	

	

	
 Additional Services

	
 Wanted IPs

	
 IP Analytics

	
							
						Featured Products
							
							[image: Synopsys, Inc.]
DDR5/4 PHY for SS8

	[image: PUFsecurity]
Upgraded PUF-based Crypto Coprocessor (Compliant with TLS 1.3 / FIPS 186-5)

	[image: ElectraIC]
AES IP Core

	[image: Arasan Chip Systems Inc.]
VESA VDC-M V1.2 Decoder

						

				

	
 News
 	
 Categories

 	
 IP/SoC Products

	
 Embedded Systems

	
 Foundries

	
 Chiplet

	
 FPGA

	
 Fabless / IDM

	
 Deals

	
 Legal

	
 Business

	
 Financial Results

	
 People

	
 Commentary / Analysis

	
 20 Most Popular News

	
 					
						Latest News
							
							[image: think-silicon-3d-graphics-ai-ip-embedded-world-2024]
Think Silicon to Showcase its Latest Ultra-Low-Power 3D Graphics and AI in One IP Architecture at Embedded World 2024
Wednesday Apr. 03, 2024

	[image: intel-financial-framework-foundry-business]
Intel Outlines Financial Framework for Foundry Business, Sets Path to Margin Expansion
Wednesday Apr. 03, 2024

	[image: hailo-funding]
Hailo Closes New $120 Million Funding Round and Debuts Hailo-10, A New Powerful AI Accelerator Bringing Generative AI to Edge Devices
Tuesday Apr. 02, 2024

						

	
 Industry Articles
 	
 Categories

 	
 IP/SoC Products

	
 Embedded Systems

	
 Foundries

	
 FPGA

	
 Business

	
 20 Most Popular Articles

	
 					
						Featured Articles
							
							[image: embracing-a-more-secure-era-with-tls-1-3]
Embracing a More Secure Era with TLS 1.3
Tuesday Apr. 02, 2024

	[image: esd-protection-automotive-ethernet]
Maximizing ESD protection for automotive Ethernet applications
Monday Mar. 25, 2024

	[image: time-sensitive-networking-for-aerospace]
Time Sensitive Networking for Aerospace
Monday Mar. 18, 2024

						

	
 Blogs
 	
 					
						Industry Expert Blogs
							
							[image: reducing-errors-and-iterations-with-an-enhanced-timing-constraints-signoff-flow]
Reducing Errors and Iterations with an Enhanced Timing Constraints Signoff Flow
Synopsys Blog - By Naveen Battu, Rimpy Chugh (Synopsys)

	[image: tetramem-risc-v-ai-accelerator-tape-out-synopsys-cloud]
TetraMem Delivers RISC-V AI Accelerator Tape-Out in Record Time on Synopsys Cloud
Synopsys Blog - Anuj Pant, Synopsys

	[image: energy-efficiency-hpc-soc]
Why You Need to Consider Energy Efficiency of Your HPC SoC Early On
Synopsys Blog - William Ruby, Synopsys

						

	
 Videos

	
 Slides

	

					Events
						
					
					
					 IP-SOC 2024

						Archives

 	
 IP-SoC Days 2023

	
 IP-SoC Days 2022

	
 IP-SoC Days 2021

	
 IP-SoC Days 2020

	
 IP-SoC Days 2019

				

		

		
	

Choose a filter
	Full Site Search
	Silicon IP
	Verification IP
	Software IP
	News
	Industry Articles

Creating SoC Integration Tests with Portable Stimulus and UVM Register Models

		

				

By Matthew Ballance - Mentor, A Siemens Business
 OVERVIEW
[image:] Writing and reading registers is the primary way that the behavior of most IPs is controlled and queried. As a consequence of how fundamental registers are to the correct operation of designs, register tests are a seemingly-simple but important aspect of design verification and bring-up. At IP level, the correct implementation of registers must be verified – that they are accessible from the interfaces on the IP block and that they have the correct reset levels. At subsystem level, verifying access to registers helps to confirm that the interconnect network and address decode have been implemented as per the spec. At SoC level, verifying access to registers confirms that the processor byte order matches the interconnect implementation, and that the boot code properly configures the memory management unit (MMU) such that IP registers are visible to the processor.
 In this article, we will explore how portable stimulus, via Accellera’s Portable Stimulus Standard (PSS), can leverage information captured in a register model to automate creation of block, subsystem, and SoC register-access tests.
 UVM BUILT-IN REGISTER TESTS
 UVM provides a register model for modeling the register space – the available registers, fields, and their attributes such as address, accessibility, and reset value. The UVM library also provides built-in directed sequences that iterate through the UVM register model and check the reset value of registers and confirm registers are accessible by modifying and checking all register fields that are read/write. These built-in tests are incredibly useful at the IP level to confirm that registers inside an individual IP block have been implemented correctly.
 Attempting to reuse these test sequences at the subsystem level becomes difficult, however, because of the number of registers present in a subsystem and the fact that the built-in UVM sequences are directed sequences that expect to test every register in the design. Attempting to reuse these built-in test sequences at SoC level is also difficult because the built-in sequences are self-checking sequences implemented in SystemVerilog. In order to run on the embedded processor of an SoC, we need to have bare-metal C or assembly code.
 By modeling our test intent with portable stimulus, we will gain the flexibility to partition our test space into multiple smaller tests. We will also gain the flexibility to target SoC level tests by creating embedded software tests in C or assembly.
 TEST INTENT AND TEST REALIZATION
 Portable stimulus separates two elements of a test that are most commonly merged in a directed test. Test intent is the high-level design of what to test. Test realization is the mechanism by which that test is carried out.
 In the case of testing a register model, our test intent looks something like the following:
 	Select a register from the register block
	Select a read/write field from the register
	Select a bit within that field to test

 The test intent described above is independent of whether we are verifying a block, subsystem, or SoC level design. It is also independent of whether we are targeting a SystemVerilog environment or an embedded-software environment.
 [image:]
 Neglecting proper constraints for a moment, our test intent for testing a single register is captured by the PSS code above:
 	We have a reg_id field to capture the register we are testing
	We have a flip_bit field to capture which bit within the register we wish to test
	We have a reg_addr field to capture the address of the field in the memory maps

 Now, without test realization to connect this test intent to a specific test environment, our test intent is pretty worthless. Ideally, we can design our test realization with portable stimulus in mind. Doing so allows us to design a common API that will be available in all environments. For example, we might specify that a method named testbit will be available in all environments, and that this method will test the ability to modify the specified bit. The function prototype for such a function is shown below.
 [image:]
 In a SystemVerilog IP- or subsystem-level environment, we could implement this method as a task within a UVM sequence. The SystemVerilog task shown below uses a memory-access API to read and write memory, and implements the register bit-test operation by:
 	Reading the current value of the register
	Negating the target bit of the register, and writing the new register value
	Reading back the register address, and checking whether the bit retains its value

 [image:]
 In the example shown above, we will continue to run if an error is encountered. This is pretty typical of UVM tests. However, an embedded software environment has different constraints.

 [image:]
 The example above shows a possible implementation of the testbit function for an embedded processor. As you can see, the approach is very similar to the SystemVerilog version, though the specifics are different. One of the biggest differences is that, in this case, we assume if a register bit test fails, we will end the entire test.
 Separating test intent and test realization is a core element of portable stimulus, and is key to enabling tests intent to easily be retargeted across environments.
 CREATING A SUBSYSTEM REGISTER MODEL
 Now that we’ve looked at an approach to capturing test intent and test realization for register testing with PSS, let’s take a brief look at how our UVM register model comes into existence. For the purposes of this example, let’s look at the very simple subsystem in figure 1. This subsystem has a processor, two Ethernet controllers, and two DMA engines.

 [image:]
 A UVM register model was created for the Ethernet and DMA controllers when they were verified at the block level. These UVM register models could have been created by hand, but more likely they were created by using a register-creation tool as shown in figure 2.
 [image:]
 Register-creation tools accept register specifications in a variety of standard (IP-XACT, SystemRDL) and non-standard (e.g., CSV) formats and generate various views of that register specification. Generating an RTL implementation of the register model saves time on design implementation. Generating a UVM register model shortens the time to bring-up a testbench. In all cases, ensuring everything is aligned with the high-level register specification saves significant time and wasted effort!
 When we reach subsystem level, a register-creation tool may help us to assemble a register model for the entire subsystem. Or, we may simply take the individual block-level register models and assemble the subsystem-level register model. The code below assembles a subsystem-level register model from the Ethernet and DMA controller register models. As you can see, not much code is required.

 [image:]
 [image:]
 	The available registers in the design, and their addresses
	The fields within those registers and any access restrictions

 What might be surprising is just how quickly the number of registers accumulate. By the time we’ve created a register model for just two Ethernet controllers and two DMA controllers, we have 989 registers with testable fields. Just think how many registers a full SoC contains!
 CREATING A REGISTER-TEST PSS MODEL
 Now that we’ve captured a subsystem- or SoC-level register model, how do we proceed to create register-access tests? First, we need to create a PSS model of the register-access test intent. Then, we need to connect that test intent to specific verification environments with test realization.
 Creating Core Test Intent
 Previously, we looked at the core test intent for register-access testing: select a register, and bit within that register to test. This high-level test intent must, of course, be constrained based on the registers in the design that is being tested. The good news is that we have already captured all the information that is needed to generate these constraints in our register model.
 In some cases, our register-creation tool may be able to create PSS register tests directly as one of its outputs. If it does not, then one approach to automating creation of our test intent is to run some SystemVerilog code that iterates through the UVM register model and writes out our PSS register-test intent. The code below shows a UVM test that calls a class named regmodel2pss to create the PSS test intent.

 [image:]
 The result is a portable stimulus description that captures register-test intent for our subsystem register map. The code shown below is the first portion of the PSS component and action created to test our register model.
 [image:]
 Our action (whose name is derived from the register-block name) declares three rand fields. The reg_id field contains an ID for the register being targeted, and will range between 0 and the number of registers minus one. The flip_bit field specifies the register bit to be tested. This field, as well as the register address, will be constrained based on register id.
 The auto-created constraints above will ensure that our action produces a valid register address and flip_bit based on the register being tested.
 [image:]
 In addition to automatically creating constraints, a PSS coverage model can automatically be created to ensure that we have covered all registers and all bits within the registers.
 Creating Top-Level Test Scenario
 Once we have the core register-test intent, we need to integrate that into a top-level PSS scenario. While our core register-test intent was automatically derived from the register model, our top-level register test scenario will be created by hand.
 [image:]
 The figure above shows our test scenario, which is built on top of the core action that encodes our test intent. Our test scenario is encapsulated in a top-level component, as required by PSS. We create an instance of the register-test component (subsys_reg_block_c) inside the top-level component, since we will be using the action from this component. In our top-level action (my_subsys_regtest_a), we create an instance of the subsys_reg_block_regs_a action named testbit. Inside this action is an instance of the register-test fields and covergroup. In the top-level action’s activity, we run testbit 100 times, which means that we will test 100 register bits each time our test runs.
 Mapping to Test Realization
 Our top-level test scenario doesn’t actually do anything yet because we’re missing test realization. Fortunately, PSS allows us to easily layer in test realization without changing the core description – in this case, the subsys_reg_block_regs_a action.
 [image:]
 The figure above shows a test realization description for SystemVerilog that leverages the PSS procedural interface. The signature of an external function is declared, and that function is invoked from the exec block of an action. This style of test realization works for any environment that supports callable procedures – C, C++, SystemVerilog, etc.
 In most cases, our bare-metal embedded software tests for our SoC will be written in C. But, what if we needed to create an assembly-language test? Fortunately, PSS provides a way to do this as well!
 [image:]
 In the test realization snipped above, we are using a PSS target-template exec block to specify a snippet of assembly code (RISC-V in this case) that must be generated to test a register bit. The curly braces (e.g., {{reg_addr}}) are used to reference the current value of a field in the PSS model and substitute that value into the generated code. Doing test realization in assembly language certainly has its limitations, but PSS makes it possible when that’s the technique that is needed!
 APPLYING PSS TESTS
 Now that we have test intent and test realization to test access to our registers, we can begin running tests. In a UVM environment, PSS gives us flexibility to either pre-generate directed tests or run a PSS solver engine along with the running simulation. Both approaches have benefits and drawbacks. On the one hand, a directed test is easy to understand.
 [image:]
 The UVM sequence above, for example, is very easy to understand, and always does exactly the same thing. But, we actually want our tests to do something slightly different as we run different seeds. And, we want to be able to easily partition the tens of thousands of register tests across different simulations running in regression. This is where using a PSS solver engine that runs along with simulation really helps. Running the same sequence with different seeds results in different behavior, and PSS tools like Questa® inFact provide dedicated features for dynamically partitioning tests across simulations running in a regression.
 [image:]
 If we are able to use C in our bare-metal software environment, we can use the testbit function implementation and the PSS procedural interface to generate C test code, as shown above.

 [image:]
 However, if we need to use assembly, we can use our target-template exec block test realization to generate a fully standalone test. A snippet from that test is shown below, left, with tests for two register/bit combinations.
 SUMMARY
 Register tests are a very useful smoke test in all environments from IP to subsystem to SoC level. While the built-in register-test sequences in the UVM library are primarily useful at IP level, capturing register-test test intent in a PSS model makes register-test functionality portable from IP to SoC level, and provides more flexibility in controlling which registers are checked in a given test run.
 Both the input files to register-generation tools and the resulting UVM register model contain sufficient information to automatically create portable stimulus test intent. This makes it very easy for register-generation tools to add support for portable stimulus tests. It also makes it very easy to derive portable stimulus tests from existing UVM register models, regardless of how they were created.
 So, portable stimulus isn’t reserved for only the most difficult of tests. Sometimes it can be applied just as easily and productively to seemingly-simple test tasks, like register-access tests, where it brings portability and saves duplicated effort.
 If you wish to download a copy of this white paper, click here
	

	

 		

	

	
		
 		
 	[image:]
	
	
 		
 	
 	Contact Siemens Digital Industries Software 	

	
	
	
	
	
	Fill out this form for contacting a Siemens Digital Industries Software representative.

 	
 	
 		Your Name:	
	Your E-mail
 	address:	
	Your Company
 	address:	
	Your Phone Number:	
	Write your message:
	
	
 	

 	

 	

		
 	

 	

 	
 	

 	

	

	

	
	
	

	[image:]
	[image:]
	[image:]

	
		
		Search Silicon IP

		
		16,000 IP Cores from 450 Vendors

		
		
		
		

				

		

		

	
	

		
		
	
			 Related Articles

			

	

		
Creating core independent stimulus in a multi-core SoC verification environment
	
Unveiling Efficient UVM Register Modeling with IDesignSpec™ GDI by Agnisys®
	
Streamlining SoC Integration With the Power of Automation
	
Creating IP level test cases which can be reused at SoC level
	
A cost-effective and highly productive Framework for IP Integration in SoC using pre-defined language sensitive Editors (LSE) templates and effectively using System Verilog Interfaces

	

	

			
		See Siemens Digital Industries Software Latest Articles >>
		

		

	
			
		 New Articles

		

		

			
				Embracing a More Secure Era with TLS 1.3
				
	
				New PCIe Gen6 CXL3.0 retimer: a small chip for big next-gen AI
				
	
				Maximizing ESD protection for automotive Ethernet applications
				
	
				The role of cache in AI processor design
				
	
				Time Sensitive Networking for Aerospace
				

		

		

	
		See New Articles >>
		

		

	
		
			 Most Popular

			

	

		
				System Verilog Assertions Simplified				
	
				System Verilog Macro: A Powerful Feature for Design Verification Projects				
	
				An Outline of the Semiconductor Chip Design Flow				
	
				New PCIe Gen6 CXL3.0 retimer: a small chip for big next-gen AI				
	
				Dynamic Memory Allocation and Fragmentation in C and C++				

	

	

	
		See the Top 20 >>

	

	
	
		

[image:]
	
E-mail This Article
	[image:]
	
[image:]

	
Printer-Friendly Page

	
	

	

	

	
	
	
	

	
	

	

	

		
	

	
	© 2024 Design And Reuse
 All Rights Reserved.

	No portion of this site may be copied, retransmitted, reposted, duplicated or otherwise used without the express written permission of Design And Reuse.

	

	
	Partner with us

	
	

	

				
				Partner with us
				

	

	
	
	List your Products

	Suppliers, list
	your IPs for free.

				
									List your Products

						

	

	
	Design-Reuse.com

		Contact Us
	About us
	D&R Partner Program
	Advertise with Us
	Privacy Policy

	

	

	
	

					

	
		
					
			
		
	

